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Chapter 1

Introduction

A large variety of test types exists. Some types of tests adapt their testing process

to the characteristics of the individual student. A computerized adaptive test

(CAT) tailors item selection and test length to the student’s ability, but can also

adapt the test content to the individual student.

Computerized adaptive testing can serve two different measurement goals:

the tests can obtain efficient and precise ability estimates or can make efficient

and accurate classification decisions. Both the testing goals are achieved while

minimizing the test length. The majority of CAT research concerns the first goal,

but a computerized classification test (CCT) serves the second goal. The focus of

this thesis is on the second goal. These tests classify students into one of a limited

number of mutually exclusive categories depending on the student’s responses to

the test items. The route toward the decision can be different for each student, but

at the end of the test, an accurate and efficient decision is made for all students.

The testing procedure of a CCT requires two methods. One method selects the

items based on some statistical criterion. The other method decides whether testing

can be stopped and makes the classification decision. Both methods often use item

response theory (IRT) to make the connection between the student’s responses, the

items, and the ability of the student, so that items can be selected and decisions

can be made. The students, items, item selection method, classification method,

and the item response theory model should be aligned with each other if a CCT

has to result in efficient, but most importantly, accurate classification decisions.

It is like walking in a maze in which at the end everyone meets the others in

the center of the maze (see Figure 1.1). Although the way through the maze is

different for everyone, at the end everyone reaches the same destination. The same

applies to a CCT; the entities within the CCT all follow their own procedure, but at

the end, everything is directed toward making efficient and accurate classification

decisions.

1
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CCT

Item Selection 
Method

IRT Model

Items
Student

Classification 
Method

Figure 1.1. The components of a computerized classification test.

This introduction starts with a description of the design components of a CCT.

The second section explores the contexts in which a CCT is used and the design

of test environments for CCTs. Some characteristics of CCTs, and their current

availability, are then discussed. The last part of the introduction introduces the

research questions that are central to this thesis.

1.1 Components of CCTs

As described previously, a CCT consists of five separate design components that

together form the basis for the design of the entire test development and test

administration process. The five components of a CCT will be described next.

1.1.1 The Student

Computerized classification tests attempt to make an efficient and accurate classi-

fication decision for each student. The goal of most CCTs is to make a judgment

about the student’s ability. This implies that the student should be the focus in the

test development process, during the testing, and after testing when the results of

the test are reported to the student.

During the development process, test developers should have a clear mental

picture of the intended testing population. Items should be written with this

picture in mind because the test items should function the same for all groups



Chapter 1. Introduction 3

of students in the testing population; that is, there should be no differential item

functioning or measurement invariance, items should have appropriate difficulty,

and item content should be suitable for the intended students.

During the testing, the student should also be the central focus. The way

items are presented should be appropriate for the students, and the navigation

through the testing environment should be suitable for the students. Furthermore,

also all procedures used should be evaluated for their functioning with regard to

the students. One of these procedures selects the items. This procedure will be

discussed in the fifth part of this section, but test developers should ensure that

the procedure can not select items that are not suitable for the student.

After testing, the test results should be communicated to the student. A CCT

can provide the classification decision, but it can also provide a knowledge profile

for each student. The latter requires that multiple decisions are made for each

student and that a classification is made into one of several levels per decision.

Independent of the type of outcome, the classification decisions should be made

with sufficient accuracy. One way to enhance learning as a result of testing is to

provide feedback to the student (see, for example, Van der Kleij, 2013).

1.1.2 The Items

The items determine whether a CCT can make accurate and efficient decisions. In

CAT, items are organized into an item bank. The item bank should be suitable

for the specific testing situation (Van Groen, Eggen, & Veldkamp, 2014) and the

intended testing population. In a calibrated item bank, model fit is established

using item response theory, item parameter estimates are available, and items with

inappropriate difficulty, fit, differential item functioning, a high lower asymptote,

or low discrimination parameters are removed. Obviously, the items should

be appropriate for the intended testing population. An important aspect when

developing a CCT is that a sufficient number of items is available with optimal

measurement properties at relevant positions on the ability scale.

To make valid inferences from the test, it is important that the construct validity

of the test is established, preferably before the test is administered. Throughout

the test development process, the test developers should monitor the validity of

the test. The evidence-centered design framework (Mislevy, Steinberg, & Almond,

2003) can provide a guideline for test developers to ensure content validity during

test development, but also to ensure validity afterwards. The argument-based

approach can provide guidelines to make valid inferences based on test scores,
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see Kane (2013). A procedure to evaluate validity based on the argument-based

approach was developed by Wools, Eggen, and Sanders (2010).

1.1.3 The Item Response Theory Model

Item responses in CAT can be modeled using IRT. IRT specifies a relation between

the score on an item, depending on the item parameters, and the student’s ability

(Van der Linden & Hambleton, 1997). The score on an item, xi = 1 correct, xi = 0

incorrect, and the ability, θj, of student j is modeled with a probability function. In

unidimensional item response theory (UIRT), the probability of a correct response

depends on just one ability parameter per student. For the two-parameter logistic

model (Birnbaum, 1968/2008) the item probability is given by

Pi (θ, ai, bi) = P (xi = 1|θ) = exp (ai [θ − bi])

1 + exp (ai [θ − bi])
, (1.1)

where ai represents the discriminating power of item i, bi difficulty, and θ ability.

In CAT, the item parameters are considered to be estimated with precise enough

to consider them known during testing (Veldkamp & Van der Linden, 2002).

In many tests, a vector of person abilities is required to describe the skills and

knowledge necessary for answering the items (Reckase, 2009). The item responses

can be modeled in these tests using multidimensional item response theory (MIRT).

The multidimensional two-parameter logistic model is given by (Reckase, 1985)

Pi(θ) = Pi (xi = 1|ai, di, θ) =
exp(a′iθ+ di)

1 + exp(a′iθ+ di)
, (1.2)

where ai is the vector of the discrimination parameters, di denotes the easiness of

the item, and θ is the vector of the ability parameters. The number of elements in

ai is determined by the number of dimensions p, l = 1, · · · , p.

Two types of multidimensionality can be distinguished. If more than one

discrimination parameter is non-zero for each item, items are intended to measure

multiple abilities (within-dimensionality; W.-C. Wang & Chen, 2004). If just one

parameter is non-zero for each item in the test, between-dimensionality is present

(W.-C. Wang & Chen, 2004). These tests consist of several related subtests.

When (M)IRT is used to model the student’s responses, an IRT model should

be selected that describes the data well and that is in coherence with the structure

of the test.
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Inferences about the student’s ability can be drawn from the likelihood of the

responses after k items with fixed item parameters are administered due to the

local independence assumption:

L (θ; x) =
k

∏
i=1

Pi (θ)
xi [1 − Pi (θ)]

1−xi , (1.3)

where x = (x1, · · · , xk) denotes the vector of responses to the administered items.

If a unidimensional model is used, one element is imputed in Equation 1.3 for θ.

The vector of values θ̂ = (θ̂1, · · · , θ̂p) that maximize the likelihood function in

Equation 1.3 is taken as the ability estimate of θj. Unfortunately, the equations

for finding maximum likelihood estimates have no closed-form solution (Segall,

1996). Several iterative procedures are available for finding the estimates, such

as Newton-Raphson and the False Positioning Method. In addition to several

estimation procedures, several types of estimates exist. In this thesis, weighted

maximum likelihood estimates are used, instead of one of the Bayesian estimates

or unweighted maximum likelihood estimates, because no prior is required and

bias in the estimates is reduced compared to unweighted maximum likelihood.

1.1.4 The Classification Method

CAT requires a method that provides the outcome of the test and that determines

whether testing can be stopped before the maximum test length is reached. CAT

can provide two types of outcomes. An ability estimate is provided in CAT for

ability estimation, and a classification decision in CAT for classification testing

(CCT). Several stop criteria exist (Reckase, 2009; C. Wang, Chang, & Boughton,

2013; Yao, 2013), such as a specified number of items, when the ability estimate

has reached a desired level of accuracy, a fixed testing time, or when a decision

has been made with the desired level of confidence (Reckase, 2009). The focus in

this thesis is on methods that provide one or more classification decisions with a

fixed or flexible test length. The latter is possible if a classification method is used

that stops testing when enough confidence is gained in the decision.

Two classification methods are often used in unidimensional classification

testing, although other methods exist. The sequential probability ratio test (SPRT;

Wald, 1947/1973) was first applied to CCT by Ferguson (1969) using classical test

theory and by Reckase (1983) using IRT. The second method uses the confidence

interval surrounding the ability estimates (Kingsbury & Weiss, 1979). These

methods were applied to between-dimensionality MIRT for making a decision
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for each dimension (Seitz & Frey, 2013a, 2013b). No classification methods are

available for within-dimensionality. Two methods for making unidimensional

decisions will be described in the next parts of this section for unidimensional

CCT and a small comparison study is presented in the last part of this section.

Classification by the Sequential Probability Ratio Test

The SPRT has been applied to unidimensional classification testing by many

scholars (Eggen & Straetmans, 2000; Finkelman, 2008; Spray, 1993; Thompson,

2009; Wouda & Eggen, 2009). A cutoff point is set on the ability scale with

an indifference region surrounding it. This indifference region accounts for the

uncertainty in the decisions, owing to measurement error, about students whose

ability is close to the cutoff point (Eggen, 1999). Multiple cutoff points are set

if a classification into one of several mutually exclusive categories is required

with accompanying indifference regions (Eggen & Straetmans, 2000; Spray, 1993;

Wouda & Eggen, 2009). Overlapping indifference regions should be avoided

because that would imply that a classification into more than one category is

acceptable.

Two hypotheses are formulated for each cutoff point θc based on the boundaries

of the indifference region (Eggen, 2010):

H0 : θj < θc − δc; (1.4)

Ha : θj > θc + δc, (1.5)

in which δc denotes the width of the indifference region. In this thesis, δ is always

set equal for all decisions. The likelihood ratio after k items are administered is

used as the test statistic for the SPRT (Eggen, 2010):

LR (θc + δ; θc − δ) =
L
(
θc + δ; xj

)
L
(
θc − δ; xj

) . (1.6)

Decision rules are then applied to decide whether to continue testing or to

make a specific classification decision:

administer another item if β/(1 − α) < LR(θc + δ; θc − δ) < (1 − β)/α;

ability below θc if LR(θc + δ; θc − δ) ≤ β/(1 − α); (1.7)

ability above θc if LR(θc + δ; θc − δ) ≥ (1 − β)/α,
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where α and β define the acceptable decision errors (Eggen, 1999). They can be set

to be symmetric or asymmetric, and can be set per cutoff point or decision. In this

thesis, these are specified to be symmetric and equal for all cutoff points. If several

cutoff points are specified, the decision rules are applied for each classification.

Van Groen, Eggen, and Verschoor (2010) and Van Groen and Verschoor (2010)

conducted small studies on the characteristics of the SPRT in the case of unidi-

mensional classification testing. They found that if δ was increased, test length

decreased, and if α and β were increased, tests were slightly shorter, but test length

was primarily influenced by the distance between the student’s ability and the

cutoff point. Varying α, β, and δ had a limited effect on accuracy, as determined

by the proportion of correct decisions. A finding was that if student ability was

close to the cutoff point accuracy decreased toward 50% correct decisions.

Classification by the Confidence Interval Method

Unidimensional classification tests can also use Kingsbury and Weiss’s (1979)

confidence interval method. This method stops testing as soon as the cutoff point

is outside the confidence interval. The confidence interval is calculated using the

t-distribution, specified by γ, and the standard error surrounding the estimates.

As soon as the cutoff point falls outside the interval, (θ̂j − γ · se(θ̂j); θ̂j + γ · se(θ̂j)),

testing is stopped using the following decision rules (Eggen & Straetmans, 2000)

administer another item if θ̂j − γ · se(θ̂j) < θc < θ̂j + γ · se(θ̂j);

ability below θc if θ̂j + γ · se(θ̂j) < θc; (1.8)

ability above θc if θ̂j − γ · se(θ̂j) > θc.

The standard error of the ability estimate is (Hambleton, Swaminathan, &

Rogers, 1991)

se(θ̂j) =
1√
I(θ̂j)

, (1.9)

where I(θ̂j) denotes the Fisher information available in the observable variables

for the estimation of θj (Mulder & Van der Linden, 2009). Fisher information is

given by (Tam, 1992)

I(θ̂j) =
k

∑
i=1

a2
i Pi(θ̂j)Qi(θ̂j). (1.10)
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Comparison of Classifications by the Sequential Probability Ratio Test and the

Confidence Interval Method

Unfortunately, no method is available to make direct comparisons between classi-

fications using different settings for the SPRT and the confidence interval method

because no mathematical proof exists for linking the settings for the two methods.

If one wants to apply one of the methods, simulation studies are required to

investigate the effect of different settings of the classification methods on average

test length and proportion of correct decisions. Van Groen et al. (2010) performed a

small comparison study for the SPRT and the Kingsbury and Weiss (1979) method

for different settings. They found that the influence of the settings on the average

test length was larger for the SPRT than for the other method. In that study, the

average test length was also higher for the SPRT, but this finding is probably

caused by the specific settings in their study. The study is too limited to conclude

that the confidence interval method always outperforms the SPRT. They also found

that the SPRT resulted in more accurate decisions than the confidence interval

method, but this can probably be explained by the longer tests. According to

Eggen and Straetmans (2000), no general preference for one of the two approaches

has been established yet.

1.1.5 The Item Selection Method

A large range of item selection methods is available and used for unidimensional

CAT; see, for example, Eggen, 1999; Luecht, 1996; Stocking & Swanson, 1993;

Thompson, 2009; Van der Linden, 2005, and Weissman, 2007. The majority of

these methods focus on CAT for estimating ability. The focus of the item selection

methods for CCTs is generally on tests with just one cutoff point. Eggen and

Straetmans (2000), Spray (1993), and Wouda and Eggen (2009) investigated item

selection for tests with multiple cutoff points. In this thesis, the discussion is

limited to the two methods that form the basis of the methods that are used in

Chapter 3.

The majority of the item selection methods for unidimensional CAT are based

on Fisher information (Van der Linden, 2005). Fisher information is strongly re-

lated to the standard error of the ability estimate, which implies that if information

is maximized, the standard error will be minimized. The objective function for

item selection then becomes

max Ii(θ̂j), for i ∈ Va, (1.11)
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where Va denotes the set of items still available for administration. The advantage

of this method is that testing is tailored to the individual student’s ability.

A second popular method maximizes information at the cutoff point, instead

of at the current ability estimate. This implies that most information is available at

the cutoff point to make the decision. The objective function is then

max Ii(θc), for i ∈ Va. (1.12)

Other methods select items for tests with multiple cutoff points (Eggen, 1999;

Spray, 1993). The problem with the second method is that, although test length in

general will be shorter, item selection is not tailored to the individual student’s

ability and all students have identical, although of different length, tests. Unfor-

tunately, no methods are available that combine the measurement efficiency and

accuracy of maximization at the cutoff point with the tailoring to the student’s

ability of the maximization at the current ability estimate.

A large range of item selection methods exists for multidimensional CAT for

estimating ability (Luecht, 1996; Mulder & Van der Linden, 2009; Reckase, 2009;

Segall, 1996; Veldkamp & Van der Linden, 2002; C. Wang, Chang, & Boughton,

2011; Yao, 2012, 2013), but for multidimensional CCT (MCCT), no specialized

methods are available. The discussion is limited here to Segall’s (1996) method.

Segall (1996) developed an item selection method for multidimensional CAT

analogous to the unidimensional method that maximizes information at the ability

estimate. This method maximizes the determinant of the information matrix at

the ability estimate. Fisher information for a p dimensional model is given by a

p × p matrix, which is defined for dimensions l and m as (Tam, 1992)

I(θl, θm) =

∂
∂θl

Pi(θ)× ∂
∂θm

Pi(θ)

Pi(θ)Qi(θ)
= ailaimPi(θ)Qi(θ). (1.13)

The item is then selected that has the largest determinant, which implies that

the size of the confidence ellipsoid surrounding the ability estimate is minimized

(Reckase, 2009). Again, the confidence region is approximated by the inverse of

the information matrix; thus, the item is selected that has the largest determinant

(Segall, 1996):

max det

(
k

∑
i=1

I(θ̂j, xij) + I(θ̂j, xk+1,j)

)
, for k + 1 ∈ Vk+1, (1.14)
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which is the determinant of the information matrix of the previous items and the

potential item k + 1. The left term denotes the information provided thus far. The

right term is the information that potential item k + 1 provides.

The described item selection methods result in tests that are expected to have

optimal characteristics to obtain an efficient and accurate classification decision

or have optimal items to tailor the test to the student’s ability. These methods,

however, ignore content validity and do not place restrictions on item usage.

Content validity can be reassured by using a content control method. A

simple method was implemented in Eggen and Straetmans (2000). They used the

Kingsbury and Zara (1989) approach, which selects the next item from the domain

for which the difference between the desired and the achieved percentage of items

selected thus far was the largest. This method is easily implemented, but can be

used only if a limited number of content constraints is specified. If a large number

of content restrictions is specified, more complicated methods have to be used (see

Van der Linden, 2005).

Item usage can be controlled using an exposure control method. Especially,

overexposure is a problem because the chance of the item content becoming known

increases with each additional test administration. Item underexposure is mainly

a problem for test developers due to the costs involved in item development. A

simplified version (Eggen & Straetmans, 2000) of the Sympson and Hetter (1985)

method was used for exposure control. For each selected item, a random number g

is drawn from the interval (0,1). When g is larger than a specified reference value,

the item is administered; if not, the item is not admissible for the remainder of the

test. Although the method appears to be elegant, it does not place restrictions on

administration of the item to large groups of students with similar ability.

Adaptivity as a Result of Item Selection

By tailoring the item selection, tests can be adapted for each student. Adaptive

systems attempt to be different for different students by using available infor-

mation about the student (Brusilovsky & Peylo, 2003). Wauters (2012) described

four dimensions of adaptivity for adaptive learning environments of which three

dimensions are considered applicable to CCTs. The medium of adaptivity is

relevant only for adaptive learning environments since it relates to specific types

of environments.

The first dimension of adaptivity concerns the form of adaptivity. Wauters

(2012) distinguished three forms of adaptivity. Adaptive form representation
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adapts the way items are presented to the student. This form of adaptivity is not

frequently used in CCT because adapting the way an item is presented implies

that multiple sets of item parameters are required for each item. Adaptive content

representation provides intelligent help on each problem-solving step that is

required for solving the item. This type of adaptivity is not often seen in CCTs,

but perhaps it is possible to divide items into smaller items that each cover a part

of the problem-solving steps. Depending on student ability, the entire item or

parts of the item can be administered to the pupil. The third form of adaptivity

concerns adaptive curriculum sequencing. This form selects the optimal question

in order to learn certain knowledge efficiently and effectively (Wauters, 2012).

Although CCTs are typically not designed to enhance learning during the test,

this form of adaptivity can be used. If a logical flow of content can be established,

content control can ensure that this flow is maintained.

The second dimension of adaptivity concerns the source of adaptivity. Again,

Wauters (2012) distinguished three categories. The first category of features

concerns item and course features. These include item difficulty and the topic

of items. The former is commonly found in CCTs because item selection is often

adapted using item difficulty parameter estimates. The latter can be included in

content control. The second category of features concerns person features. In

adaptive learning environments, these comprise the learner’s knowledge level,

motivation, cognitive load, interests, and preferences (Wauters, 2012). In CCTs,

only a limited set of person features is used. The most important person feature

concerns the ability estimate that is used to select items with appropriate difficulty.

The third category of adaptivity concerns context features such as the time when,

the place from which, and device on which the student works in the environment

(Wauters, 2012). The possibility of adapting these features in CCTs depends on

the stakes of testing and the capabilities of the assessment software.

The third dimension of adaptivity concerns the level of adaptivity. According to

Wauters (2012), this concerns whether the source of adaptivity is considered static

or dynamic. CCTs tend to have a static structure because adaptivity tends to be

implemented consistently in one test administration using just one item selection

method. Nevertheless, multi-segment CAT (Eggen, 2013) makes it possible to

create different segments into one CAT with different selection and content control

methods implemented in each segment. This enables creating dynamic CCTs.
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1.2 The Context and Test Environment of CCTs

Thus far, attention was paid to the components of the CCTs. Obviously, a test

is always administered within a certain context and within a specific testing

environment. Two elements of that context are discussed. CCT is one of the

many types of digital assessment. Some types are discussed in the next part of

this section. In addition, test administration always takes place within a specific

approach to assessment with specific consequences based on the test’s results.

Four approaches will be discussed in the second part of this section. The modules

of a test environment for CCTs will be discussed in the third part of this section.

1.2.1 Digital Assessments

A large range of types of digital assessment exists besides CCTs. Six types of

digital testing are discussed here including their ability to make classification

decisions: linear tests (LTs), automatically generated tests (AGTs), computerized

adaptive testing for estimating ability (CAT-E), adaptive learning environments

(ALEs), educational simulations (ESs), and educational games (EGs).

The first type is linear testing. Test content, item order, and test length are the

same for all students. Item selection is fixed before test administration, which

implies that testing is not tailored to the individual student (Mellenberg, 2011).

LTs can be used to estimate ability but also to make classification decisions.

The second type is automatically generated testing. Tests are assembled before

administration using a set of test constraints and conditions (Parshall, Spray,

Kalohn, & Davey, 2002). AGTs can also be used to make decisions.

The third type is computerized adaptive testing for estimating ability. This

type of testing has already been discussed. The main difference between CAT-E

and CCTs concerns the reported outcome: an ability estimate or a classification

decision. CAT-E can be used to make classification decisions by setting a cutoff

point at the ability scale and make a comparison between the estimated ability

and the cutoff point.

The fourth type is adaptive learning environments. These systems optimize

instruction to each student’s individual needs, preferences, or context (Wauters,

2012). Typically, the focus is on providing instruction to the student as opposed

to making a judgment based on the student’s responses. ALEs can be used for

making classification decisions in low-stakes test situations if IRT is used.
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The fifth type is educational simulations. Educational simulations can be

used for simulating real-world events. They typically report multiple aspects in

proficiency for a wide range of abilities and skills.

The sixth type is educational gaming. EGs can facilitate learning but also keep

the learner motivated and engaged (Novak, Johnson, Tenenbaum, & Shute, 2014).

They can report real-time estimates of competencies across a range of skills and

knowledge (Mislevy et al., 2014).

1.2.2 Test Approaches

Thus far, the components and modules of CCTs and several other types of digital

assessments have been described. Administration of a CCT takes place with a

certain goal in mind. Four types of assessment approaches will be discussed next,

and the possibility of using CCTs in those contexts is explored.

The first approach is formative assessment. Formative assessment attempts to

support and improve the learning process by making decisions at the level of the

learner or the class (Van der Kleij, Vermeulen, Schildkamp, & Eggen, 2013). CCTs

can be used for formative assessment because their efficiency make it possible to

assess a relatively large set of test domains while keeping the test length acceptable.

The second approach is formative evaluation. Formative evaluation focuses on

making judgments about the school for developing educational policies within the

school (Van der Kleij et al., 2013) and for improving education (Scheerens, Glas, &

Thomas, 2003). CCTs can be used to make judgments about the school because the

school can specify cutoff points that are related to the school goals. Using CCTs,

the percentage of students who master the subject can be monitored over time, or

before and after the innovation.

The third approach is summative assessment. This approach focuses on what

has been learned by the end of the testing process (Stobart, 2008). A decision is

then made about the student’s mastery of a content domain (Van der Kleij et al.,

2013). The focus of a CCT is on defining whether a student masters a topic; thus a

CCT can make very efficient and accurate decisions for summative assessment.

The fourth approach is summative evaluation. In this approach judgments are

made about the school (Van der Kleij et al., 2013) or about educational systems.

CCTs can be used to make such judgments if individual test results are aggregated

to the intended level. The percentage of students who master a topic or the

decrease in the percentage of students who did not master the topic before and

after intervention can be reported.
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1.2.3 The Modules of a Test Environment for CCTs

A CCT is administered within a test environment. The test environment admin-

isters the test and keeps a record of all the information required for the digital

administration of the test. Nwana (1990) and Wauters (2012) distinguished four

modules of adaptive learning environments that are considered applicable to test

environments for CCTs. These modules (student, tutor, knowledge, and user

interface) will be described next.

In an adaptive learning environment, the student module contains all infor-

mation concerning the student, such as the student’s current knowledge level,

student characteristics, and learning style (Wauters, 2012). According to Nwana

(1990), the module forms a representation of the student’s current knowledge with

respect to the mastery of the knowledge in the domain module. This information

can be used to select the items (Wauters, 2012).

The tutor module answers the learner’s questions about goals and content,

decides when a student needs help, and selects the items and tasks (Wauters,

2012). This module tries to enhance learning and tailors the test and instruction to

the individual student’s ability and characteristics.

In an adaptive learning environment, the knowledge module contains the

knowledge the student is trying to acquire and the relationships between the

knowledge elements (Paramythis & Loidl-Reisinger, 2004; Wauters, 2012). This

implies that the module contains all information about the items, their item

parameters, and content characteristics.

The user interface controls the interactions between the student and the testing

system (Nwana, 1990), displays items, and retrieves the student’s responses.

A good user interface demonstrates consistency and clarity and reflects good

interface design principles (Parshall et al., 2002). Although the user interface is

the only part of the test that the student actually sees and interacts with (Parshall

et al., 2002), it was not mentioned as a component of CCTs. The user interface was

not included because it has limited influence on test content and test construction.

The capabilities of the software that is used for developing the user interface can

place restrictions on test content, but discussing those limitations falls outside the

scope of this thesis.
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1.3 Characteristics of CCTs and Their Availability

Thus far, a short overview was provided about computerized adaptive tests for

making classification decisions. The introduction began with the components

that should come together in a CCT to make efficient and accurate classification

decisions: the student, the items, the item response theory model, classification

methods, and item selection methods. The characteristics of CCTs that were

investigated for this thesis will be discussed here.

When the research for this thesis started, computerized adaptive tests could

be used only to obtain unidimensional ability estimates, to make unidimensional

classification decisions, or to obtain multidimensional ability estimates, but not

to make multidimensional classification decisions. While the research was being

conducted, two methods became available for between-dimensional classification

decisions (Seitz & Frey, 2013a, 2013b). Even with these two manuscripts, much

more research can be conducted for multidimensional classification testing.

A CCT classifies students into one of two or more classification categories.

For unidimensional CCTs, approaches for classifying into one of two and one of

several categories are available for the SPRT (Eggen & Straetmans, 2000; Spray,

1993) and the confidence interval method (Eggen & Straetmans, 2000; Kingsbury

& Weiss, 1979). The possibility of using a CCT for multiple multidimensional

classifications with between- and within-dimensionality will be explored.

In the case of between-dimensionality, (Seitz & Frey, 2013a, 2013b) showed that

the SPRT can be used to make a decision per dimension. If a decision is required

on all dimensions simultaneously, an additional decision rule has to be used to

combine the decisions per dimension in a decision on the entire test. It would be

interesting to investigate whether a different solution is possible.

Spray, Abdel-Fattah, Huang, and Lau (1997) concluded that it was not possible

to use the SPRT. Nevertheless, it could be interesting to explore the possibility to

make multidimensional classification decisions with within-dimensionality.

Currently, two major types of item selection methods for CCTs select the item

that has the most information at the current ability estimate or at the cutoff point.

The former tailors item selection to the student’s ability estimate; the latter results

in the most accurate and efficient classifications. Ideally, a compromise between

both would be used because that would result in accurate and efficient decisions

while tailoring item selection to the student’s ability. Such approaches to item

selection could form an interesting topic for further study.
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1.4 Research Questions and Thesis Outline

In the previous sections of this introduction, some of the topics that will be

addressed have been mentioned. Four research questions were explored in this

thesis. The answers to the research questions will be provided in the concluding

epilogue of this thesis.

How can item selection by maximizing information at the cutoff point(s) and maximization

at the ability estimate be combined to obtain accurate and efficient classification decisions,

and tailoring item selection to the student’s ability?

Currently existing item selection methods were previously discussed as a

component of CCTs. The discussed methods for unidimensional classification

testing select the item that provide the most information at the current ability

estimate or at the cutoff point(s). Several methods will be described in Chapter 2

that take both the ability estimate and the cutoff points into account. One of the

methods in Chapter 2 is extended for between-dimensionality in Chapter 3 and

for within-dimensionality in Chapter 5.

How can multidimensional classification decisions be made on all dimensions simultane-

ously for tests with between- and within-dimensionality?

At the start of this research project, no classification methods were available

for multidimensional IRT. During the project, two methods were developed for

between-dimensionality (Seitz & Frey, 2013a, 2013b). Unfortunately, these methods

cannot be used to make decisions on more than one dimension simultaneously. A

method to make decisions on the entire test, but also on subtests, is discussed in

Chapter 3. In Chapters 4 and 5, two methods to make multidimensional decisions

are described for tests with within-dimensionality. The SPRT is applied in Chapter

4 and the confidence ellipsoid method in Chapter 5.

How can items be selected in tests with between- and within-dimensionality so that

accurate and efficient decisions can be made?

To make accurate and efficient multidimensional classification decisions, items

have to be selected with optimal characteristics. A method for selecting the items

that have the largest determinant of the information matrix is available for MCAT

for estimating ability (Segall, 1996). Since no classification method was available,

no item selection methods were developed to make multidimensional classification



Chapter 1. Introduction 17

decisions. Such an item selection method is developed in Chapter 4 for within-

dimensionality. In Chapters 3 and 5, an item selection method for between- and

for within-dimensionality is described that takes both the cutoff point and the

ability estimate into account (see research question 1).

In which contexts can computerized classification testing be used, and how should the test

be designed in those contexts?

A small overview of assessment contexts was provided in earlier sections.

The design, usability for different test approaches, and adaptivity is explored

in Chapter 6 for different types of digital assessments. The types of digital

assessments are linear testing, automatically generated testing, computerized

adaptive testing for estimating ability, computerized classification testing, adaptive

learning environments, educational simulations, and educational gaming.

The chapters in this thesis were written to be self-contained. Therefore, some

overlap could not be avoided.
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Chapter 2

Item Selection Methods Based on Multiple Objective

Approaches for Classifying Examinees into Multiple

Levels

Abstract

Computerized classification tests classify examinees into two or more levels while

maximizing accuracy and minimizing test length. The majority of currently

available item selection methods maximize information at one point on the ability

scale, but in a test with multiple cutting points, selection methods could take

all these points simultaneously into account. If one objective is specified for

each cutoff point, the objectives can be combined into one optimization function

using multiple objective approaches. Simulation studies were used to compare

the efficiency and accuracy of eight selection methods in a test based on the

sequential probability ratio test. Small differences were found in accuracy and

efficiency between different methods depending on the item pool and settings of

the classification method. The size of the indifference region had little influence on

accuracy, but considerable influence on efficiency. Content and exposure control

had little influence on accuracy and efficiency.

This chapter was published as Van Groen, M.M., Eggen, T.J.H.M., & Veldkamp, B.P. (2014). Item
selection methods based on multiple objective approaches for classification of respondents into
multiple levels. Applied Psychological Measurement, 38(3), 187-200.
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2.1 Introduction

Originally, computerized adaptive tests (CATs) were developed for obtaining

an efficient estimate of an examinee’s ability, but Weiss and Kingsbury (1984),

Lewis and Sheehan (1990), and Spray and Reckase (1994) showed that CATs can

also be used for classification problems (Eggen & Straetmans, 2000). In these

computerized classification tests (CCTs), the main interest is not in obtaining an

estimate, but in classifying the examinee into one of multiple categories (e.g.,

pass/fail or master/nonmaster). CCT can be used to find a balance between

the number of items administered and the level of confidence in the correctness

of the classification decision (Bartroff, Finkelman, & Lai, 2008). In CCT, the

administration of additional items stops when enough evidence is available to

make a decision. As in Eggen and Straetmans (2000), the focus in the current

study is on classifying examinees into one of three (or even more) categories.

In adaptive classification testing, item selection is based on the examinee’s

previous responses, which tailors the item selection to the examinee’s ability.

Several item selection methods are described in the literature (see for example

Eggen, 1999; Thompson, 2009). The design of the item selection method partly

determines the efficiency and accuracy of the test (Thompson, 2009). Current

methods select items based on one point on the scale and are often not adaptive

in selecting items. However, if several cutoff points are specified, gathering as

much information as possible at all cutoff points while considering the examinee’s

ability may be desirable. By doing so, information is gathered throughout a larger

part of the ability scale. Especially at the beginning of the test, uncertainty exists

about the ability of the examinee, which implies that gathering information at a

range of points on the scale would be beneficial.

The study is organized as follows. First, details are given regarding computer-

ized classification testing. Then some of the current and newly developed item

selection methods are described. The performance of the methods was compared

using simulation studies. The final section of this article gives concluding remarks.

2.2 Classification Testing

Computerized classification testing can be used if a classification decision has

to be made about the level of an examinee in a certain domain. CCT was used

to place students in one of three mathematics courses of varying difficulty in

the Netherlands (Eggen & Straetmans, 2000), but can also be used if a decision
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such as master/nonmaster is required. An advantage of classification testing

is that shorter tests can be constructed, while maintaining the desired accuracy

(Thompson, 2009). Reducing the number of items is important because the testing

time is reduced, fewer items have to be developed, security problems are reduced,

and item pools have to be replenished less often (Finkelman, 2008). Adaptive

classification testing shares with CAT the advantage of adapting the test to the

examinee’s ability. This possibly reduces the examinee’s frustration because fewer

too easy or too hard items are administered and a larger set of items is selected

from the item pool. However, examinees can experience that the items in a CAT

are difficult (Eggen & Verschoor, 2006) when compared to a regular test in which

an able student answers only relatively easy items. This drawback of CAT as well

as CCT was overcome by Eggen and Verschoor (2006) by selecting relatively easy

items. CCT also shares the drawback with CAT that examinees cannot change

answers to previously administered items.

One part of the CCT procedure determines whether testing can be stopped

and a decision can be made before the maximum test length is reached. Popular

and well-tried methods are based on the sequential probability ratio test (SPRT).

The SPRT (Wald, 1947/1973) was first applied to classification testing by Ferguson

(1969) using classical test theory and by Reckase (1983) using item response theory

(IRT). The SPRT has been applied to CAT and multistage testing (Luecht, 1996;

Mead, 2006; Zenisky, Hambleton, & Luecht, 2010). Other available methods

(Thompson, 2009) are not considered in this study.

In CCT, a cutoff point is specified between each pair of adjacent levels. The

indifference regions are set around these points, which account for the uncertainty

of the decisions due to measurement error, regarding examinees with ability

close to the cutoff point (Eggen, 1999). If multiple cutoff points are specified, it

would be strange if the indifference regions of different cutoff points overlapped.

Overlapping indifference regions imply that classification into one of three levels

is admissible for examinees with an ability within the overlapping regions and

that uncertainty exists about decisions regarding the three levels. In this situation,

test developers should reconsider the number of cutoff points and the size of the

indifference regions. However, in practice, this is not always possible.
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To apply the SPRT to a classification problem, two hypotheses are formulated

for each cutoff point θc (c = 1, · · · , C), based on the boundaries of the accompany-

ing indifference region (Eggen, 2010):

H0 : θj < θc − δc1; (2.1)

Ha : θj > θc + δc2, (2.2)

in which θj denotes ability for examinee j and δc. the widths of the indifference

regions. These are set equal to δ. To avoid overlapping indifference regions, δ

should be smaller than half the difference between adjacent cutoff points.

Item responses are modeled using IRT, in which a relation is specified for the

score on an item depending on item parameters and the examinee’s ability (Van

der Linden & Hambleton, 1997). The relationship between a specific score on

an item (xi = 1 correct, xi = 0 incorrect) and an examinee is modeled with a

probability function. The model used here is the two-parameter logistic model

(Birnbaum, 1968/2008), in which the probability of a correct response is given by

P (xi = 1|θ) = exp (ai [θ − bi])

1 + exp (ai [θ − bi])
= Pi (θ) , (2.3)

where ai represents the discriminating power of item i, bi difficulty, and θ ability.

A prerequisite for CCT is a calibrated item bank that is suitable for the specific

testing situation. In a calibrated item bank, the fit of the model is established,

and estimates of the item parameters are available, with items with inappropriate

difficulty or low discrimination parameters removed.

In IRT, the probability of an examinee’s responses to test items is conditionally

independent given the latent ability parameter. Inference about the ability of an

examinee can be drawn from the likelihood of the responses after k items are

administered (Eggen, 1999) using

L
(
θj; xj

)
=

k

∏
i=1

Pi
(
θj
)xij

[
1 − Pi

(
θj
)]1−xij , (2.4)

in which xj = (x1j, · · · , xkj) denotes the vector of responses to the administered

items for examinee j.
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When the SPRT is applied to classification testing, the likelihood ratio of both

hypotheses after k items are administered (Eggen, 2010) is the test statistic:

LR (θc + δ; θc − δ) =
L
(
θc + δ; xj

)
L
(
θc − δ; xj

) . (2.5)

Decision rules are applied to make the decision to continue testing or to make

the decision that ability is at a level below or above the specific cutoff point:

administer another item if β/(1 − α) < LR(θc + δ; θc − δ) < (1 − β)/α;

ability below θc if LR(θc + δ; θc − δ) ≤ β/(1 − α); (2.6)

ability above θc if LR(θc + δ; θc − δ) ≥ (1 − β)/α,

where α and β are small constants that specify acceptable decision errors (Eggen,

1999). In practice, a maximum test length is set to ensure that testing stops at

some point. If the maximum test length is reached, the examinee is classified as

performing above the cutoff point if the likelihood ratio is larger than the midpoint

of the interval in Equation 2.6. If multiple cutoff points are specified and the

decision is made that the ability is above cutoff point θc, the same procedure is

applied for cutoff point θc+1.

If δ increases, the difference between the likelihoods is larger and thus, more

uncertainty is allowed to make the decision, which implies less accurate decisions

and shorter tests. Eggen (1999) found for the situation with one cutoff point that

increasing α and β had little effect on the proportion of correct decisions, but

increasing δ influenced classification accuracy.

2.3 Current Item Selection Methods

Several item selection methods can be used in CCT (see Eggen, 1999; Luecht, 1996;

Stocking & Swanson, 1993; Thompson, 2009). Most methods were developed for

tests with classification into one of two levels, but a few methods were proposed

for tests with more levels. The majority of item selection methods are based on

Fisher information (Van der Linden, 2005). Other types of information such as

Kullback-Leibler information (Eggen, 1999) and mutual information (Weissman,

2007), can also be used but are not included here. If maximizing Fisher information

is the objective, the optimization function becomes
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max Ii(θ), for i ∈ Va, (2.7)

where Va denotes the set of items still available for administration. In Equation

2.7, the k + 1th item is selected that has the most information Ii:

Ii(θ) = a2
i Pi(θ) [1 − Pi(θ)] (2.8)

A method currently used maximizes information at the ability estimate θ̂j. The

accuracy of this estimate is related to the number of items available for estimation

(Hambleton, Swaminathan, & Rogers, 1991), which causes the method to select

items that are potentially not optimal at early stages of the test. The advantage of

this method is that items are selected adaptively to the examinee.

A number of methods exists for classification tests with more than two lev-

els (Eggen & Straetmans, 2000; Wouda & Eggen, 2009). Maximization of test

information at the middle between the cutoff points and at the nearest cutoff

point (Spray, 1993) are just two approaches (Eggen & Straetmans, 2000). The first

method determines the middle of the cutoff points closest to the current estimate

and maximizes information at that point. The second method optimizes at the

cutoff point located nearest the ability estimate. Both methods base their item

selection on the ability estimate, which is considered an advantage in educational

settings.

As Weissman (2007) concluded, choosing an item selection method in conjunc-

tion with the SPRT is not straightforward. Spray and Reckase (1994) concluded

that maximizing information at the cutoff score, for classifying into one of two

levels, results, on average, in shorter tests than selecting items at the current ability

estimate. Thompson (2009), however, concluded that this method is not always the

most efficient option. Wouda and Eggen (2009) compared methods that maximize

information at the middle of the cutoff points, at the nearest cutoff point, and at

the ability estimate using simulations and found for the situation with two cutoff

points that maximization at the middle of the cutoff points resulted in the most

accurate, but also in the longest, tests.

The methods described thus far all select items based on some optimal statistical

criterion. In practical testing situations, however, item exposure and content control

also have to be considered. Item overexposure can be a security concern and several

methods have been developed for dealing with it (for example, see Sympson &

Hetter, 1985). Content control mechanisms can ensure that the assembled tests
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meet test specifications; for example, 10 items should measure Domain A and at

least 12 Domain B. For an extended overview of methods that deal with content

restrictions, see Van der Linden (2005).

The described methods maximize information at one point on the latent scale

using the ability estimate. One objective is formulated using this point and this

objective is optimized. An alternative approach is to maximize information on all

cutoff points simultaneously. If an objective is formulated for each cutoff point,

they can be combined using multiple objective approaches. These approaches

combine several objectives into one objective function. The developed methods all

take the ability estimate into account. The advantage of these approaches is that

measurement is more precise at all cutoff points. Multiple objective approaches

were used for optimal test design in multidimensional testing (Veldkamp, 1999)

and exposure control in CAT (Veldkamp, Verschoor, & Eggen, 2010).

2.4 Item Selection Based on Multiple Objective Approaches

Veldkamp (1999) described six approaches for combining multiple objectives:

weighting methods (WM), ranking or prioritizing methods, goal programming

(GP) methods, global-criterion (GC) methods, maximin (MA) methods, and

constraint-based methods. These approaches are adapted for classification testing

with multiple cutoff points. The methods are first described and then adapted.

2.4.1 Weighting Methods

A straightforward method for optimizing several objective functions involves

combining them into one objective function to which weights can be added to give

various objectives varying importance (Veldkamp, 1999). The weighted deviation

model (Swanson & Stocking, 1993), in which the deviations from the goal values

are combined using weights, is probably the most well-known application of WM

to test construction problems. Instead of weighting the deviations, weighting

is applied here to the objectives. The decision between Levels 1 and 2 could be

considered to be more important than the decision between Levels 2 and 3. Speci-

fication of different weights for the two decisions ensures that more information

is gathered at the first cutoff point. Varying weights while administering the test

gives more weight to specific objectives at various testing stages. In this study,

the weight for a specific cutoff point increases if the ability estimate is closer to
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the cutoff point. This implies that item selection is adapted to the ability of the

examinees. The resulting objective function is

max
C

∑
c=1

1
|θ̂j − θc|

Ii(θc), for i ∈ Va. (2.9)

2.4.2 Ranking or Prioritizing Methods

If certain objectives are more important than others, ranking or prioritizing meth-

ods can be used. Ranking methods require all objectives to be ranked according to

their perceived importance (Ignizio, 1982). In the first step, the most important

objective is optimized. In the second step, a constraint is added that ensures

that the value of the first objective remains close to the target value obtained and

the second objective is optimized. This process continues until all objectives are

optimized (Veldkamp, 1999). In most tests using the SPRT, ranking or prioritizing

methods cannot be used because no differences in the importance of certain cutoff

points are specified.

2.4.3 Goal Programming

In both methods discussed so far, the goal was to find the optimal solution. GP

methods focus on achieving specific target values (Veldkamp, 1999). However,

achieving all target values specified a priori is not always possible. In those

situations, the preferred solution is calculated (Veldkamp, 1999). GP methods

minimize the deviations between what was aspired to and what is actually accom-

plished (Ignizio, 1982). The combined objective function specifies the deviations

from the targets and the priorities for achieving each objective (Mollaghasemi

& Pet-Edwards, 1997). Several goal function approaches are described in the

literature such as Van der Linden’s (2005) framework for optimal test design and

the normalized weighted absolute deviation heuristic (Luecht, 1996).

Veldkamp (1999) proposed that, in the absence of prespecified targets, the test

assembler starts with an intuitive guess and uses the procedure iteratively. In CCT,

no targets are available for information, but gathering as much information as

possible is preferred. One possibility is to compute the sum of the information

each available item can provide at each cutoff point and at the current ability

estimate. The item with the largest sum is then selected. Weights can be added

before calculating the sum. The resulting objective function then becomes what

Luecht (1996) calls a composite objective function,
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max ∑
s∈Vs

wsIi(θs), for i ∈ Va, (2.10)

where ws denotes the weight for scale point s and Vs = {θ1, · · · , θC, θ̂j}. In this

study, all cutoff points were considered equally important so all weights were set

equal. However, an utility function can be used to weight the objectives as well as

weights can be based on policy decisions.

2.4.4 Global-Criterion Methods

GC methods optimize all objectives separately and combine the results into one

global criterion. First, all objectives are optimized resulting in optimal values

for every objective (Veldkamp, 1999). Second, the results are combined into a

global criterion. The value of this global criterion is then optimized. The method

for combining the results is specified a priori. When this method is applied to

CCT, the first step is to optimize the objectives for each cutoff point separately.

One possibility is to consider the items that provide the most information at

the different cutoff points and the current ability estimate. Several combination

methods are possible. The separate objectives were combined by calculating the

sum of the information at the cutoff points for all items that provide the most

information at one of the selected points. The combined objective then becomes

max
C

∑
c=1

Ii(θc), for i ∈ Vmax, (2.11)

where Vmax denotes the set of available items, which provide the most information

at one of the cutoff points or the current ability estimate. This differs from the

previous method in that the optimal values for the objectives are combined and

then the global optimum is used instead of using non-optimal values and then

combining them into the goal function. Weights have not been included in this

study, but can be added.

2.4.5 Maximin Methods

MA methods can be used if a maximum value has to be found on multiple points

(Boekkooi-Timminga, 1989). A lower boundary is set on the target of the objectives.

This boundary is then maximized (Van der Linden, 2005). If the objectives are on

the same scale, the method ensures that unexpected extreme values for one or

more objectives do not occur.
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A starting value must be found for the boundary. This value should be low

enough to ensure feasibility and high enough so that the calculations do not

consume unreasonable amounts of time. In CCT, a lower boundary can be set

on the information at the cutoff points and the ability estimate provided by the

items that were administered thus far. The item was selected that maximized the

boundary.

2.4.6 Constraint-Based Methods

Constraint-based methods require prioritizing the objectives (Veldkamp, 1999).

One objective is optimized, and the other objectives are reformulated into con-

straints. Additional constraints can be added to specify other test characteristics

such as the amount of testing time and content control using, for example Van der

Linden’s (2005) framework. In CCT, using a constraint-based method implies that

one cutoff point is considered the most important. This cutoff point is formulated

as an objective, and constraints are formulated for the remaining cutoff points. In

the present study, no cutoff point was considered to be most important, so this

method was not applied here.

2.5 Simulation Studies

Using simulation studies, the average test length (ATL) and classification accuracy

were investigated for the various item selection methods. Classification accuracy

was defined as the proportion of correct decisions (PCD). The influence of the

size of the indifference region on the ATL and PCD is investigated in the second

part. Simulations with different values for α and β are not reported here, because

increasing the acceptable error rate had little effect on the PCD. This is in line

with Eggen’s (1999) findings; he reported the same finding for simulations with

two cutoff points. The effects of content constraints and exposure control were

investigated in the last section.

Methods based on WM, GP, GC, and MA were included in the simulation

studies. Three existing item selection methods were also included: selecting the

item that maximizes information at the current ability estimate (AE), selecting

the item that maximizes information at the middle of the nearest set of cutoff

points (MC; Eggen & Straetmans, 2000), and selecting the item that maximizes

information at the nearest cutoff point (NC; Spray, 1993). Random item selection

(RA) was included to serve as a baseline for the ATL and the PCD.
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The characteristics of the item pool were expected to influence the ATL and

the PCD of the eight item selection methods. Two item pools were investigated.

The first pool was simulated with item parameters generated with a∼N(1.50, 0.50)

with a>0 and b∼U(−3.00, 3.00). One thousand items were generated for the item

pool, and maximum test length was set at 40 items. The specifications of this pool

result into a rather "ideal" situation. One thousand examinees were randomly

drawn from θ∼N(0.00, 1.00). This was replicated 100 times for each item selection

method. The ATL and PCD strongly depend on the number of defined cutoff

points; thus, simulations using two, three, and four cutoff points are presented

here. The cutoff points were set at the 33th, 66th percentiles of the population

distribution for two cutoff points, 25th, 50th, 75th percentiles for three cutoff points

and 20th, 40th, 60th, 80th percentiles for four cutoff points. In the study, δ = 0.10,

and α = β = 0.05.

A second item pool consisted of 250 items from an operational test. The

parameters of the items in the pool are from a mathematics test for adult education

in the Netherlands (Eggen & Straetmans, 2000). The test was used to place students

in one of three courses. Using a standard setting procedure, the cutoff points

were set at -0.13 and 0.33. Testing was stopped after 40 items or less to ensure

comparability with the simulations with the simulated item pool. The acceptable

error rates (α, β) were set at 0.05 and δ at 0.10. The distribution of θ for generating

examinee ability was set equal to the estimated population distribution. One

thousand examinees were simulated with N∼(0.294, 0.522). The items had a mean

item difficulty of 0.00, and the mean discrimination was 3.09. The simulations

were executed for the eight item selection methods and were replicated 100 times.

2.5.1 Simulations with a Simulated Item Pool

The results for the simulated item pool simulations are summarized in Table 2.1.

The ATL and the PCD are provided in the table. First, the table clearly indicates

that on average at least 32 items were required before tests were terminated by

the SPRT if two cutoff points were specified. Second, the PCD was just above the

specified accuracy level. The differences in the PCD were rather small between

the different item selection methods. However, the random method was 8% less

accurate than the other methods.

Depending on the item selection method, almost 35 items were required with

three cutoff points. AE was the most efficient method. The differences in the PCD

were also small, but random item selection resulted, in an additional 8% more
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Table 2.1
Results from Simulations with a Simulated Item Pool

Two CP Three CP Four CP

Item selection method ATL PCD ATL PCD ATL PCD

RA 39.533 0.820 39.776 0.745 39.868 0.676

AE 32.646 0.906 34.861 0.866 35.938 0.826

MC 32.694 0.902 34.989 0.862 36.038 0.827

NC 32.721 0.908 35.009 0.867 36.170 0.828

WM 34.153 0.907 37.201 0.867 38.359 0.830

GP 33.065 0.907 37.296 0.863 39.364 0.818

GC 35.602 0.902 39.275 0.855 39.961 0.809

MA 33.259 0.902 36.856 0.853 38.444 0.798

Note. CP = cutoff points; ATL = average test length; PCD = proportion of correct decisions;
RA = Random item selection; AE = ability estimate; MC = middle of the nearest set of
cutoff points; NC = nearest cutoff point; WM = method based on weighting; GP = goal
programming; GC = global criterion; MA = maximin.

incorrect decisions. A minimum of 85% of the examinees were classified correct

using one of the other item selection methods.

Even fewer tests were terminated by the SPRT with four cutoff points. AE,

MC, and NC resulted in the lowest ATL. Depending on the method, 80-83% of

the classifications were correct. RA classified accurately in 68% of the tests. A

comparison of the simulations using two, three, and four cutoff points showed that

more items were required before testing was terminated if more cutoff points were

specified. In addition, the currently used methods tended to require fewer items if

the number of cutoff points was higher. In addition, the classification accuracy

decreased by 2% to 4% when an additional cutoff point was set. Specifying more

cutoff points also implied that the multiple objective methods have to take more

cutoff points into account, which could have resulted in longer tests if the distances

between the current ability estimate and the cutoff points increased.

2.5.2 Simulations with the Mathematics Item Pool

The ATL was much smaller in the simulations with the mathematics pool (Table

2.2). RA was clearly outperformed by the other methods. Eleven additional items

were required before a classification was made if RA was used instead of AE. The

shortest tests were produced by AE, NC, GP, and WM.
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Table 2.2
Results from Simulations with a Mathematics Item Pool

Item selection method Average Test Length Proportion of Correct Decisions

RA 31.599 0.875

AE 20.213 0.915

MC 20.666 0.912

NC 20.593 0.916

WM 20.923 0.917

GP 20.831 0.914

GC 22.571 0.909

MA 22.514 0.908

Note. ATL = average test length; PCD = proportion of correct decisions; RA = Random
item selection; AE = ability estimate; MC = middle of the nearest set of cutoff points; NC
= nearest cutoff point; WM = method based on weighting; GP = goal programming; GC =
global criterion; MA = maximin.

The proportion of correct decisions was the highest for WM. NC, AE, GP, and

MC had a slightly lower PCD. RA resulted in the lowest PCD. Most methods

classified more accurately than was specified by α and β.

2.5.3 Simulations with Various Delta Values

To investigate the effect of the size of the indifference region on the ATL and

the PCD, the simulations were repeated with different values for δ. The effect

of the size of the indifference region was investigated for the simulated and the

mathematics item pool. The investigation of δ was limited to the range 0.050 to

0.400 for the simulations with the simulated pool and to the range 0.025 to 0.225

for the simulations with the mathematics pool. The simulations with the simulated

item pool were performed with two cutoff points. As described previously, setting

δ to larger values does not make any sense if that implies that the indifference

regions of different cutoff points will overlap. The results are displayed for RA,

AE, WM, and GC. The results of the methods that were not included here, were

similar to the results of the presented methods, except for RA.

Simulations with a Simulated Item Pool

The PCD for the simulations with a simulated item pool is displayed in the left

part of Figure 2.1. The difference in the PCD appeared to be related to δ. If δ was

set at rather large values, the PCD decreased. The results also indicated that the
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Figure 2.1. Results from simulations with a simulated item pool for different sizes of the
indifference region.
Note. The solid black line denotes random item selection, the solid grey line method based
on weighting, the dotted lack line ability estimate, and the dotted grey line global criterion.
PCD = proportion of correct decisions; ATL = average test length; δ = width indifference
region.

difference in accuracy between selecting items at random and other item selection

methods was only slightly influenced by the value of δ.

The ATL of the simulations with a simulated item pool is plotted in the right

part of the figure for different values of δ. The number of items administered before

a classification decision was made, was clearly influenced by δ. ATL decreased if

the δ was increased. The ATL decreased with 11 items if RA was used, but ATL

decreased with up to 27 items if a different method was used.

Simulations with the Mathematics Item Pool

The PCD for the simulations with the mathematics item pool is displayed in the

left part of Figure 2.2. In contrast to the simulations with a simulated item pool,

the PCD decreased if the size of the indifference region was increased to 0.10.

The difference in the PCD was rather small between different values of δ, but

depending on the item selection method, if δ was set higher than 0.175, the PCD

dropped below the desired accuracy level as specified by α and β. If RA was used,

the PCD was for all investigated values of δ below the desired accuracy level.

As seen in Table 2.2, the choice for an item selection method influenced the

PCD, but Figure 2.2 indicates that this also held for different values of δ. In

the right part of Figure 2.2, the ATL is shown. The ATL decreased to 10 or 11
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Figure 2.2. Results from simulations with the mathematics item pool for different sizes of
the indifference region.
Note. The solid black line denotes random item selection, the solid grey line method
based on weighting, the dotted lack line ability estimate, and the dotted grey line global
criterion. PCD = proportion of correct decisions; ATL = average test length; δ = width
indifference region.

items depending on the item selection method if δ was increased, except for RA.

Although the test length decreased a lot, δ was only slightly increased, because

the PCD had to remain above the specified accuracy level.

2.5.4 Simulations with Content and Exposure Control

Thus far, the simulations were limited to the situation in which no content specifi-

cations were specified and no action was taken to avoid overexposure. In actual

testing programs, constraints have to be met for the content of the test, and at-

tention is also paid to item exposure. In adaptive testing, implementing content

or exposure control often results in longer tests. Eggen and Straetmans (2000)

considered content and exposure control for the mathematics item pool. Their

simulations were replicated in this study for the eight item selection methods.

The Kingsbury and Zara (1989) approach was used to select 16% of the items

from the subdomain mental arithmetics/estimation, 20% from measuring/geom-

etry, and the other items from the other domains in the curriculum. The item

was selected from the domain for which the difference between the desired and

achieved percentage of items selected thus far was the largest.

Exposure control was implemented using a simplified form (Eggen & Straet-

mans, 2000) of the Sympson and Hetter (1985) method. When an item was selected,
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a random number g was drawn from the interval (0, 1). When g>0.5, the item

was administered; if not, another item was selected. The rejected item was not

admissible for the respondent for the remainder of the test.

A different procedure was implemented to select the first three items. An

examinee was presented a relatively easy item from the item pool. Fifty-four

items were denoted as easy items. Depending on the implemented content control

method, an easy item was selected for each domain, or three relatively easy items

were selected at random.

Simulations were run implementing content (C) and exposure (E) control with

the maximum test length set at 25, δ = 0.10, and α = β = 0.05. For random

item selection, simulations were limited to the situation in which no content and

exposure control was implemented, but items 1–3 were selected from the set of

relatively easy items.

The results for these simulations are given in Table 2.3. Content control had

limited influence on the ATL and the PCD. Exposure control had a slightly larger

influence on the ATL, but also had a low impact on the PCD. Implementing content

and exposure control resulted in the longest tests, the least accurate decisions, and

had little influence on the ranking of the item selection methods.

Table 2.3
Results from Simulations with and without Content Constraints and Exposure Control

No C, no E C E C+E

Selection ATL PCD ATL PCD ATL PCD ATL PCD

RA 23.103 0.838

AE 17.122 0.896 17.343 0.895 18.218 0.885 18.439 0.886

MC 17.330 0.890 17.685 0.891 18.314 0.883 18.494 0.883

NC 17.667 0.896 17.701 0.897 18.561 0.887 18.648 0.888

WM 17.987 0.897 17.969 0.896 18.768 0.889 18.897 0.889

GP 17.451 0.893 17.675 0.895 18.392 0.884 18.580 0.884

GC 18.985 0.885 18.970 0.889 19.779 0.881 20.196 0.881

MA 18.529 0.885 18.845 0.885 19.256 0.878 19.609 0.877

Note. C = content constraints; E = exposure control; ATL = average test length; PCD =
proportion of correct decisions; RA = Random item selection; AE = ability estimate; MC =
middle of the nearest set of cutoff points; NC = nearest cutoff point; WM = method based
on weighting; GP = goal programming; GC = global criterion; MA = maximin.
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2.6 Discussion

Four item selection methods were developed and were compared with current

methods for classifying examinees into multiple categories. The new methods

consider the multiple cutoff points when selecting items. Simulations were used

to investigate the effect of the item selection methods on the PCD and the ATL.

In the first series, a simulated item pool was used. Two, three, and four

cutoff points were specified. Random item selection resulted in a lower PCD, but

differences in ATL and PCD were small for the other methods. The differences in

the PCDs for different item selection methods were also small. A second series

of simulations was done using the mathematics item pool. The differences in the

ATL and the PCD were also small except for random item selection.

It was expected that taking multiple cutoff points into account would decrease

the ATL and increase the PCD. The results show that the available item selection

methods classified as accurate and efficient as the multiple objective methods.

This was probably caused by always taking all cutoff points into account. In the

later stages we already know in which part of the scale a classification is likely

to be made, but the methods also take the other parts of the scale into account.

This can be solved by restricting the number of cutoff points that is considered

by the item selection method after a number of items is administered. It would

also be interesting to use a multiple objective approach in the starting phase of

the test and then switch to one of the currently available methods. By using such

an approach, the advantages of both types of methods are exploited; first a broad

part of the scale is considered and then a more precise method can be used.

Comparing the simulations with a simulated pool and the mathematics item

pool shows that characteristics of the item pool, distribution of ability, settings of

the classification method, and the number of cutoff points all influenced the test

length and the accuracy. This suggests that simulation studies should be executed

during the development process for a classification test.

The test length and the accuracy were influenced by the size of the indifference

regions. The simulations were repeated with different specifications for the

indifference region. The ATL and the PCD decreased in the simulations with a

simulated and a mathematics item pool. The test length and the accuracy were

only slightly influenced by content and exposure control in the simulations with

the mathematics item pool. This finding is in line with the findings of Eggen and

Straetmans (2000).
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In the present study, item selection methods were included that considered

the examinee’s ability. In addition to the obvious psychological and educational

advantages of adaptive item selection, some initial simulations with item selection

methods that were not adaptive showed that the number of items required before

making a decision and the accuracy of the classifications was comparable or even

better with adaptive methods than with methods that are not adaptive.

Investigating whether the current results can be replicated if other and larger

item pools are used or if the examinees characteristics are changed would be inter-

esting. Here, only one method was developed per multiple objectives approach,

but other methods are possible. These should be investigated using simulations

with different item pools, SPRT settings, and examinee characteristics.
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Chapter 3

Multidimensional Computerized Adaptive Testing for

Classifying Examinees on Tests with

Between-Dimensionality

Abstract

A classification method is presented for multidimensional adaptive testing in

which a decision is made on the entire test. The items, which measure one ability

each, are modeled using multidimensional item response theory. One method

exists for classification testing for between-dimensionality (Seitz & Frey, 2013).

This method classifies based on the underlying dimensions, but not on the entire

test. The method is extended to include decision making based on the entire

test, on several dimensions, and on subsets of items. A measure is presented that

provides information about the support for the decisions. Items were selected that

maximize information at the current ability estimate or at a weighted combination

of the cutoff points. An empirical example illustrates the methods discussed.

This chapter has been submitted as Van Groen, M.M. & Eggen, T.J.H.M. (2014). Multidimen-
sional Computerized Adaptive Testing for Classifying Examinees on Tests with Between-Dimensionality.
Manuscript submitted for publication.
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3.1 Introduction

The majority of computerized adaptive tests (CATs) obtain a precise and efficient

estimate of the examinee’s ability. However, on some CATs, the goal is to make

accurate and efficient classification decisions about the examinee’s ability. In

CATs for making classification decisions, the test length is minimized while

the desired accuracy level is maintained. A large body of research is available

for unidimensional CAT (UCAT), but knowledge about multidimensional CAT

(MCAT) is still growing. Limited information is available about MCATs for making

decisions.

Multidimensional CATs can be constructed using multidimensional item re-

sponse theory (MIRT). In MIRT, a vector of person abilities describes the skills

and knowledge required for answering the items (Reckase, 2009). The score on an

item is modeled using the relationship between an examinee’s ability and the item

parameters (Van der Linden & Hambleton, 1997). With MIRT, two types of multi-

dimensionality can be modeled. Between-dimensionality implies that items are

intended to measure only one trait (Wang & Chen, 2004). Within-dimensionality

implies that items measure several traits.

Several methods for making unidimensional classification decisions are avail-

able (Eggen, 1999; Spray, 1993; Weiss & Kingsbury, 1984), but few methods are

available for multidimensional constructs. Van Groen, Eggen, and Veldkamp’s

(2014b) method can be used for within-dimensionality, and Seitz and Frey’s (2013)

method can be used for between-dimensionality. The latter makes decisions for

each dimension but not a simultaneous decision on all dimensions.

In many testing situations, a global pass/fail or a classification into one of

several mutually exclusive categories is required. Seitz and Frey’s (2013) method

cannot be used to make decisions on the entire test. An extension is proposed for

making such decisions for between-dimensionality. The proposed method can also

be applied to any subset of dimensions in the test, instead of all dimensions. This

implies that if a test consists of several sections that are modeled with separate

dimensions, a decision can be made for the different sections although some

sections are modeled with multiple dimensions. The application of the method

to subsets of items in the test is also explored. Seitz and Frey (2013) classified

examinees into one of several levels. The proposed extensions can also classify

examinees into multiple levels.
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A measure is proposed that indicates the support for the decision that was

made. After the settings are specified for the classification method, the measure

indicates the relative support for the decisions that are made based on the test.

This measure can be reported to the examinee in addition to the classification

decision itself.

Multidimensional classification testing also requires a method for selecting

the items. Several methods are available for selecting the items for MCATs that

estimate ability (Reckase, 2009; Segall, 1996; Yao, 2012), but little knowledge is

available for classification MCATs. In unidimensional classification testing, items

are often selected based on the ability estimate or the cutoff point (Eggen, 1999).

Similar approaches are explored here for MCATs with between-dimensionality.

The article is structured as follows. First, MIRT is described. Then, classification

and item selection methods are presented. Fourth, a method is proposed for

describing the support for the decisions. Fifth, the efficiency and effectiveness of

the methods are investigated for an empirical example. Finally, remarks are made

about multidimensional classification testing and directions for future research.

3.2 Multidimensional Item Response Theory

MCAT requires an item bank that is calibrated with a multidimensional item

response theory model (Reckase, 2009). In a calibrated item bank, model fit is

established, item parameter estimates are available, and items with undesired

characteristics are removed (Van Groen, Eggen, & Veldkamp, 2014a). During

the administration of the CAT, the item parameters are assumed to be estimated

precisely enough to consider them known (Veldkamp & Van der Linden, 2002).

The two-parameter logistic model is used here (Reckase, 1985). In MIRT, a set

of p abilities accounts for the examinee’s responses to the items and the probability

of a correct answer, xi = 1, to item i is given by (Reckase, 2009)

Pi(θ) = P (xi = 1|ai, di, θ) =
exp(a′iθ+ di)

1 + exp(a′iθ+ di)
, (3.1)

where ai is the vector of the discrimination parameters, di is the scalar parameter

representing the easiness of item, and θ the vector of the ability parameters. If

only one discrimination parameter is non-zero per item, for all items, the test is

considered to have between-dimensionality (Wang & Chen, 2004), and items are

intended to measure only one ability. If multiple discrimination parameters differ
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from zero, within-dimensionality is present, and items are intended to measure

multiple or all abilities.

MIRT can be used to model performance in complex domains, take into account

several abilities simultaneously and represent different combinations of abilities for

different items (Hartig & Höhler, 2008). If a MIRT model is fitted to the same data

with the same number of dimensions, the within- and between-dimensional models

are essentially equivalent and may be equally appropriate (Hartig & Höhler, 2008).

Therefore, the choice for a within- or between-dimensional model depends on

the intended interpretation of the model. In a within-dimensional model, the

ability on one dimension can compensate the ability on another dimension. A

between-dimensional test exists of several unidimensional subscales and does not

specify whether abilities are completely different or share common elements. In

a within-dimensional model, explicit assumptions are made about the relations

between the abilities for different sets of items (Hartig & Höhler, 2008). If a test

consists of several related unidimensional subscales, such as in the empirical

example here, a between-dimensional model is a logical choice.

The likelihood of a vector of observed responses xj to items i = 1, · · · , k for an

examinee j with ability θj equals the product of the probabilities of the responses

to the test items because of the local independence assumption (Segall, 1996):

L
(
θj|xj

)
=

k

∏
i=1

Pi
(
θj
)xij Qi

(
θj
)1−xij , (3.2)

where Qi(θj) = 1 − Pi(θj) and item parameters are considered known. The vector

of the values, θ̂ = (θ̂1, · · · , θ̂p), that maximizes the likelihood function in Equation

3.2 is used as the ability estimate for θj (Segall, 1996). The equations for finding the

maximum likelihood estimates have no closed-form solution (Segall, 1996). Thus,

an iterative search procedure, such as Newton-Raphson, is used for finding the

maximum likelihood estimates. Weighted maximum likelihood (WML) estimation,

which is used here, is an extension of maximum likelihood (ML) estimation and

reduces the bias in the ML estimates. WML was developed by Tam (1992) as an

extension of the unidimensional estimator by Warm (1989). The procedure used is

described in Van Groen et al. (2014b).
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3.3 Classification Methods

One part of the adaptive classification procedure determines whether testing can

be stopped and which decision is made. Few methods are available for making

multidimensional classification decisions (Seitz & Frey, 2013; Spray, Abdel-Fattah,

Huang, & Lau, 1997; Van Groen et al., 2014b). Van Groen et al.’s (2014b) method

uses a reference composite (M. Wang, 1985, 1986, as described by Reckase, 2009)

for reducing the multidimensional space to a line. The eigenvectors of the largest

eigenvalue of the aa′ matrix for the entire construct determine the direction of the

reference composite. Eigenvalues and eigenvectors make sense only if all elements

of the matrix are non-zero. If items each measure only one, although different,

dimensions, all non-diagonal elements are zero. The result is that the reference

composite classifies on only one dimension. This implies that the method is not

suitable to make classifications with between-dimensionality. Seitz and Frey (2013)

developed a method to make classification decisions with between-dimensionality

(see next section). The method is expanded in the second and third parts of this

section to make decisions on the entire test and on parts of the test.

3.3.1 A Classification Method for Between-Dimensionality

Seitz and Frey (2013) developed a classification method for between-dimensional

tests based on the fact that the multidimensional two-parameter logistic model is a

combination of several unidimensional two-parameter logistic models (W.-C. Wang

& Chen, 2004). This is a result of the fact that the likelihood for an item contains

only one dimension, because the contributions of the other dimensions reduce to

zero. Thus, the likelihood for an item is equal to the likelihood for the same item

under the unidimensional two-parameter logistic model. Since items are combined

that load on different dimensions, multiple unidimensional two-parameter logistic

models are combined into one multidimensional two-parameter logistic model.

Seitz and Frey (2013) implemented the unidimensional classification method using

the sequential probability ratio test (SPRT) for each dimension separately.

The SPRT (Wald, 1947/1973) with unidimensional IRT was developed by

Reckase (1983), following Ferguson (1969) for classical test theory, and used

by, among others, Eggen (1999), Spray (1993), and Thompson (2009). A cutoff

point, θcl, is set for each dimension, l, with an indifference region around cutoff

point c. The indifference region accounts for the uncertainty of the decisions,

owing to measurement error, about examinees with an ability close to the cutoff
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point (Eggen, 1999). Hypotheses are formulated at both ends of the indifference

regions:

H0l : θjl < θcl − δ; (3.3)

Hal : θjl > θcl + δ, (3.4)

δ denotes half the size of the indifference region. The SPRT uses the likelihood

ratio between the hypotheses for dimension l after k items as the test statistic:

LR (θcl + δ; θcl − δ) =
L
(
θcl + δ; xjl

)
L
(
θcl − δ; xjl

) , l = 1, · · · , p, (3.5)

in which L
(
θcl + δ; xjl

)
and L

(
θcl − δ; xjl

)
for cutoff point c for dimension l are

calculated using Equation 3.2 with only those items included that load on the

dimension. This simple likelihood ratio is possible because the likelihood for items

that measure the same ability reduces to a one-dimensional likelihood in the case

of between-dimensionality (Seitz & Frey, 2013).

The SPRT applies decision rules per dimension to decide whether to continue

testing or to make a decision:

administer another item if β/(1 − α) < LR(θcl + δ; θcl − δ) < (1 − β)/α;

ability below θc if LR(θcl + δ; θcl − δ) ≤ β/(1 − α); (3.6)

ability above θc if LR(θcl + δ; θcl − δ) ≥ (1 − β)/α,

where α and β specify the acceptable classification error rates (Spray et al., 1997).

In practice, a maximum test length is set to ensure that testing stops at some

point (Eggen, 1999). At this point, if the likelihood ratio for dimension l is larger

than the midpoint of β/(1 − α) and (1 − β)/α for dimension l the examinee is

classified as having an ability above the cutoff point.

Seitz and Frey (2013) also considered four cutoff points per dimension. They

implemented the Armitage (1950) approach, in which the ratios are calculated for

all combinations of levels (Spray, 1993). Since the likelihood has no additional

local maxima besides the global maximum in the multidimensional two-parameter

logistic model, the Sobel and Wald (1949) approach is used here. In this approach,

the likelihood ratio is computed for adjacent levels (Eggen & Straetmans, 2000).

Seitz and Frey’s (2013) method has three limitations. One, for tests with within-

dimensionality the likelihood ratio does not reduce to Equation 3.5. Thus, this
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method cannot be used then. Two, the method ignores information from items

loading on other dimensions when classifying (Seitz & Frey, 2013). Three, the

method requires an additional decision rule if one global decision has to be made.

The method is adapted to make a decision on the entire test.

3.3.2 Extension for Making Decisions on the Entire Test

A fail/pass decision or a classification into one of multiple levels for the entire

test is required in many testing situations. Seitz and Frey’s (2013) method can be

adapted to make a decision on the entire test. The likelihood in Equation 3.5 is

extended to include all dimensions and all items:

LR (θc + δ; θc − δ) =
L
(
θc + δ; xj

)
L
(
θc − δ; xj

) . (3.7)

Here, θc includes the cutoff points for all dimensions, and all elements of δ are

assumed to be equal to δ. If a test is modeled using three dimensions, Equation

3.7 becomes

LR (θc + δ; θc − δ) =
L
(
θc1 + δ; xj1

)
L
(
θc1 − δ; xj1

) · L
(
θc2 + δ; xj2

)
L
(
θc2 − δ; xj2

) · L
(
θc3 + δ; xj3

)
L
(
θc3 − δ; xj3

) , (3.8)

in which the cutoff point of interest is selected for each dimension. The items that

load on each dimension are used to calculate the likelihood per dimension.

3.3.3 Extensions for Making Decisions on Parts of the Test

Two other extensions include making a decision using only part of the dimensions

and making a decision on a subset of the items. A decision can be made on only

part of the dimensions. The likelihood ratio of Equation 3.7 then consists of the

dimensions that are relevant to the intended decision and becomes

LR (θcl + δ; θcl − δ) = ∏
L
(
θcl + δ; xjl

)
L
(
θcl − δ; xjl

) , for l ∈ Vc, (3.9)

where Vc denotes the set of dimensions that are relevant for the current decision

and xjl the set of items for dimension l.

The second type of extension includes decisions that are based on only a part of

the items that load on dimension l. The likelihood ratio is calculated for a subset

of the items in the test and becomes for dimension l
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LR (θcl + δ; θcl − δ) =
L
(
θcl + δ; xjls

)
L
(
θcl − δ; xjls

) , for xjls ∈ Vs, (3.10)

where Vs denotes the set of items that form the basis of the decision.

Decisions can be made on several dimensions, several sets of items, and on

multiple levels. This makes it possible to include an item in several decisions. An

example of such an item is an item used in the decision about the entire test, but

is also used to make a decision about a part of the test. Different dimensions, from

which part of the items are selected, can be included in a decision. Seitz and Frey

(2013) showed that it is possible to classify pupils into one of several mutually

exclusive levels, which is also possible for the extensions that are proposed here.

3.4 Item Selection Methods

Another component of an MCAT selects the items (Reckase, 2009). The item

selection method is important, because selecting items that are too hard or too

easy or provide little information results in tests that do not function well (Reckase,

2009). Several methods are available for MCATs (Luecht, 1996; Mulder & Van der

Linden, 2009; Reckase, 2009; Segall, 1996; Veldkamp & Van der Linden, 2002; Yao,

2012), but these methods all focus on obtaining an efficient ability estimate.

Two papers for multidimensional classification testing selected items using

Segall’s (1996) methods. Seitz and Frey (2013) applied Segall’s (1996) Bayesian

item selection method for between-dimensionality, and Van Groen et al. (2014b)

applied Segall’s (1996) ML method that maximizes the determinant of the infor-

mation matrix for within-dimensionality. In the latter manuscript, Segall’s (1996)

method was adapted to select the items at the current projected ability estimate

and the cutoff point based on the reference composite. Optimizing with respect

to the ability estimate and the cutoff point are commonly used methods in unidi-

mensional classification testing (Eggen, 1999; Spray & Reckase, 1994; Thompson,

2009). The same optimizations as in the unidimensional case are applied here for

between-dimensionality.

3.4.1 Item Selection Based on the Ability Estimate

Segall (1996) developed a method analogous to the unidimensional method that

maximizes Fisher information. Fisher information is a measure of the information

in the observable variables on the ability parameters (Mulder & Van der Linden,
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2009). The diagonal elements of this p × p matrix, I(θ), for dimension l are (Tam,

1992)

I(θl) =

∂
∂θl

Pi(θ)× ∂
∂θl

Pi(θ)

Pi(θ)Qi(θ)
= a2

ilPi(θ)Qi(θ). (3.11)

Information is calculated here for the current ability estimate, θ̂j. The off-

diagonal elements of the information matrix are zero for items with between-

dimensionality.

Segall’s (1996) item selection method uses the relationship between the in-

formation matrix and the confidence ellipsoid around the estimates (Reckase,

2009). It obtains the largest decrement in the volume of the confidence ellipsoid

(Segall, 1996). The inverse of the information matrix approximates the size of the

confidence ellipsoid, thus the item is selected that maximizes (Segall, 1996)

max det

(
k

∑
i=1

I(θ̂j, xij) + I(θ̂j, xk+1,j)

)
, for k + 1 ∈ Vk+1, (3.12)

in which Vk+1 denotes the set of items that are available for administration. The

maximization is over the determinant of the sum of the information matrix of the

administered items and the information of potential item k + 1. The selected item

has the largest determinant. Thus, the volume of the confidence ellipsoid around

the ability estimate is minimized (Reckase, 2009).

Segall’s (1996) method is generally applicable to MCAT, but requires a non-

singular matrix (Yao, 2012). A matrix is nonsingular if all diagonal elements are

larger than zero. This implies that information is required for all dimensions in

the test before Segall’s (1996) method can be applied. Thus, Yao (2012) selected

the first l items from each of the l dimensions. Another solution is to calculate

the determinant for the part of the information matrix that contains non-zero

elements.

If all available items measure the same dimension, Segall’s (1996) method

reduces to maximizing information at the current ability estimate. Thus, the

unidimensional item selection method that maximizes information at the current

ability estimate can be used instead. The quantity that is maximized becomes then

max Ii(θ̂l), for i ∈ Val, (3.13)

where Val is the set of items that are available for selection for dimension l.



Chapter 3. Between-Dimensional Classification Testing 54

3.4.2 Item Selection Based on the Cutoff Points

In unidimensional classification testing, information is often maximized at the

cutoff point (Eggen, 1999; Spray, 1993). If all available items measure the same

dimension, unidimensional item selection methods can be used. Van Groen et al.

(2014a) described item selection methods based on the cutoff points and the ability

estimate and found that the differences in accuracy and efficiency between the

methods are very small. One of the most effective, but also very efficient, methods

is the weighting method (Van Groen et al., 2014a). This method required a few

more items on average than the method that selects at the nearest cutoff point, but

it was the most accurate.

The weighting method combines several objective functions in one objective

function with weights for the objectives (Van Groen et al., 2014a). The weight for a

specific cutoff point increases if the ability estimate is closer to the cutoff point.

Thus, the item selection is adapted to the examinee’s ability. If all available items

measure the same dimension l, the quantity that is maximized becomes

max
C

∑
c=1

1
|θ̂jl − θcl|

Ii(θcl), for i ∈ Val. (3.14)

3.5 Measure for Reporting the Confidence in the Decision

The SPRT makes a decision but does not provide information about the support

for the decision that was made. A measure is proposed that reflects the support

for the decision. This measure can be reported as a test result, to indicate whether

more or less support was available for the decision than the SPRT required.

The likelihood ratio in Equation 3.5 can provide the information, but reporting

it has four issues. One, the value of the ratio depends on δ. Two, it is difficult

for teachers and examinees to interpret. Three, with a different δ, the ratio has

a different value. Four, the likelihood ratios for multiple decisions cannot be

compared. The second is a problem because the comparison value depends on the

decision rules. If the value is smaller than β/(1 − α), this is the value to compare

with. But what does a value smaller than the decision value imply? In addition, if

the value is larger than (1 − β)/α, this value must be compared with.

A better alternative is to standardize the likelihood ratio in relation to the

decision values. The likelihood ratio can be standardized by dividing the likelihood

ratio by (1 − β)/α for the support for the decision that the examinee’s ability is
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above the cutoff point. For the support for the decision that the ability is below the

cutoff point, the ratio is inverted before the division and is divided by β/(1 − α).

Therefore, the support for the decision, DS, becomes

support for decision below θcl : DS− =
LR(θcl − δ; θcl + δ)

β/(1 − α)
;

support for decision above θcl : DS+ =
LR(θcl + δ; θcl − δ)

(1 − β)/α
. (3.15)

If DS− or DS+ equals one, enough support was gathered for the decision. If the

value is smaller than one, the decision is made with less support than required. If

DS− or DS+ is larger than one, then the decision is supported more than required.

The measure can be reported as a test result. If an examinee is classified at a level

with two adjacent levels, DS+ and DS− are reported for the adjacent levels.

The value of DS depends on δ, but since the combination of δ, α, and β is set

beforehand so that decisions with the test are made with the required accuracy and

efficiency, it is now possible to compare the gathered support with the required

support for making the decision. The interpretation problem is fixed by using

DS because a value smaller than one implies that the decision was made without

enough support and a value larger than one implies that the support was above the

required amount. It does not make sense to investigate the value of the DS before

fixing δ, α, and β, because the value of the measure depends on the specified

settings. At testing time, these values have been set by the test developer, thus

interpreting DS now makes sense. A teacher can also compare the support for

different decisions, because the interpretation of DS is the same for all decisions.

3.6 Empirical Example

The classification and item selection methods are illustrated with an empirical

example. Seitz and Frey (2013) illustrated their method using a simulated item

bank, but here response patterns and item parameters from an existing dataset

were used. The End of Primary School Test (Cito, 2012) in the Netherlands provides

an advise about the most suitable secondary education level for pupils. Dutch

secondary education is divided into multiple levels: pre-vocational secondary

education (VMBO), general secondary education (HAVO), and pre-university

education (VWO). VMBO is divided even further into three levels: VMBO-BB,

VMBO-KB, and VMBO-GT.
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The test consists of three components: Language, Mathematics, and Study

Skills. Language (LAN) is divided into Writing (WR), Text Comprehension (TC),

Vocabulary (VO), and Spelling (SP). The latter consists of Spelling of Verbs (SPV)

and Non-Verbs (SPN). Mathematics (MAT) consists of Measurement, Geometry,

Time & Money (MGTM); Relations, Fractions & Percentages (RFP); and Numbers

& Computations (NC). Study Skills (SS) consists of Study Texts (ST), Information

Sources (IS), Geography (GE), and Tables & Graphs (TG).

The End of Primary School Test is calibrated using six unidimensional IRT

scales. The fit of the scales for WR, TC, VO, SP, MAT, and SS is established

annually. A scale score based on the pupil’s proficiency is provided as the test

result in addition to percentile scores for the three main components. Intervals for

this scale score are related to the secondary education levels (Van Boxtel, Engelen,

& De Wijs, 2011). This score and the primary school’s recommendation are used

by secondary education schools to classify pupils into different classes based on

the education levels.

3.6.1 Study Design

In 2012, 147,099 pupils took the standard paper-and-pencil version of the End of

Primary School Test. Other versions of the test, such as digital and easier versions,

were not considered here. In the current study, classifications based on the SPRT

were compared to classifications based on the scale score.

In addition to providing an overall classification decision, classification deci-

sions were made on all components and subcomponents of the test. The lower-level

classification decisions provide insight into the pupil’s level on the underlying

topics. A schematic overview of the decisions is shown in Figure 3.1. The deci-

sions on the entire test and LAN were based on items measuring six and four

dimensions. Classifications on the part of the items that measured one dimension

were made for the components of SP, MAT and SS.

The dataset for the 2012 version of the Final Test was used here. The dataset

was randomly divided into 10 datasets. The data of the first dataset were calibrated

with a six between-dimensional two-parameter MIRT model using NOHARM 4

(Fraser & McDonald, 2012). The responses in the dataset and the resulting item

parameters were used to make the classifications. The first dataset was also used

to determine the cutoff points and settings for the SPRT. The intervals available for

the five education levels (Van Boxtel et al., 2011) determined the cutoff points for

the total test. The median of the ability estimates for each of the five intervals was
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Total Test

Language

Mathematics

Study Skills

Writing

Spelling

Vocabulary

Text Comprehension

Measurement, Geometry, Time & Money

Relations, Fractions & Percentages

Numbers & Computations

Study Texts

Information Sources

Geography

Tables & Graphs

Spelling Verbs

Spelling Non-verbs

Figure 3.1. Decisions by the SPRT for the End of Primary School Test.
Note. One-dimensional decisions are printed in boldface. Decisions on subsets of a
dimension are printed in italics.

calculated, and the midpoint between two adjacent medians was set as the cutoff

point. The median is used instead of the mean due to the skewness of the ability

distributions. The same procedure was applied for decisions based on parts of the

scales. If a decision was based on multiple dimensions, the cutoff points on the

separate dimensions were used for Equation 3.7.

The analyses consisted of two parts. In the first part, the consistency of the

classification method was determined with all 200 items included but also with

fewer items. Consistency was specified by the proportion of consistent decisions

(PCD). The proportion of classifications by the SPRT and the classifications based

on the intervals of the scale score that were equal denote the consistency (PCD1)

for the total test. For the underlying decisions, no baseline classification decision

was available. Since the pupils could also be classified based on their estimated

ability, this classification was used for comparison for the lower-level decisions.

This proportion of consistent decisions is denoted as PCD2. Unfortunately, this

was possible only if just one dimension was involved in the decision, so this was

not possible for the decision on LAN.

Test length was set at 150, 160, 170, 180, 190, and 200 items. Test length per

component of the test was fixed in the analyses and shortened in proportion to the

total test length. Components consisting of 10 items in the original test were not

shortened. Two reasons existed for fixing the test length. One, a fixed test length is

often considered more acceptable in high-stakes testing. Second, in initial analyses
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with the SPRT the test length of the components of the End of Primary School Test

could not be reduced much by the SPRT. The analyses with fewer than 200 items

made it possible to investigate the influence of shortening the test on consistency.

By setting the test length at fewer than 200 items, it was also possible to

investigate the influence of the item selection method on classification consistency.

A third consistency measure, PCD3, compared the classification by the SPRT at

the maximum and reduced test length. This measure could be used for investing

the influence of reducing the test length and item selection on consistency.

The analyses were conducted using three item selection methods: maximization

of information at the cutoff points using the weighting method, maximization

of information at the current ability estimates, and random item selection. The

components TC, WR, ST, and GE consisted of testlets. The item selection methods

for testlet items had to administer groups of items around a common stimulus such

as a text or map in the correct order. The information-based methods were adapted

so that the testlet was selected that maximized the average testlet information

at the specified point on the ability scale. Per testlet, the average amount of

information per item was calculated for the items in the testlet and was used for

selection. Random item selection selected one testlet at random.

The settings of the SPRT potentially influenced which decision was made.

Analyses were conducted with α = β = 0.05 or 0.10. The α and β values partly

determined which decision was made, because they were used in the decision

rules. A lower value could also have resulted in a shorter test, but the test length

was specified beforehand. δ was set at 0.05. The size of δ also potentially influenced

the decision that was made and the length of the test. In initial analyses, a higher

value of δ resulted in less consistency between the classification by the SPRT and

the classification based on the scale score, so δ was set at this small value.

Cross validity of the results was also investigated. The item bank was calibrated

with 10% of the data. The remaining part of the data were divided into nine parts

of equal size. The analyses were replicated for the remaining datasets with item

parameters fixed at the values for the first dataset.

3.6.2 Results

The analyses consisted of two parts. In the first part, the consistency of the

classifications with the maximum test length was investigated for the Dutch

End of Primary School Test. In the second part, results of the first part were

cross-validated with other datasets of the same test.
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Classification Consistency at Maximum and Reduced Test Length

The goal of the first part of the analyses was to determine the consistency of the

SPRT classifications and the decisions based on the scale score. The proportions of

consistent decisions (PCDs) were used as a consistency measure. First, consistency

was investigated at the maximum test length. Second, consistency was inspected

at a reduced test length for the three item selection methods. Third, the differences

in PCD between the selection methods are discussed. Fourth, the PCDs for the

components of LAN, MAT, and SS were investigated.

Consistency at Maximum Test Length

For the total test with 200 items, the consistency (PCD1) between the decisions

based on the scale score intervals and the SPRT decisions was 0.897, as shown

in Table 3.1. The scale score classification and the SPRT decision contributed to

the inconsistencies in four ways. One, the interval decisions contributed to the

inconsistencies, because they were based on transformed raw scores. Two, the

error in the item parameter estimates for the SPRT decisions contributed to the

inconsistencies. Three, different dimensions compensated each other in the SPRT

classifications but not in the classifications based on the intervals. Four, the ability

estimates used for the cutoff points for the SPRT contained measurement error.

The classifications based on the scale score intervals were only available for

the total test. For LAN, using the SPRT was the only possibility. This implied

that no comparison decision was available at the maximum test length, which was

required for calculating consistency. Classifying based on the ability estimates

was not possible, because the component was modeled using multiple dimensions.

The decisions for LAN could only be compared with decisions for shorter tests.

For all other decisions, the SPRT classifications and the classifications using

the ability estimates were available. The resulting proportions of consistent

decisions, PCD2, are presented in the table for MAT and SS. At 200 items, the

consistency between the SPRT classifications and the classifications based on the

ability estimates for MAT was 0.972. Classification consistency based on the PCD2

measure was lower for SS, 0.941, than for MAT. Inconsistencies in the decisions

could be caused by estimation error in the item and ability parameters. Errors in

the item parameters, however, influenced both classifications. Errors in the ability

parameters affected only the classifications that were based on them.
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Table 3.1
Proportion of Consistent Decisions for Different Test Lengths with Random Item Selection

Decision α, β Consistency 200 190 180 170 160 150

Total test 0.05 PCD1 0.897 0.890 0.882 0.871 0.860 0.847

Total test 0.10 PCD1 0.897 0.890 0.884 0.871 0.863 0.855

Mathematics 0.05 PCD2 0.972 0.970 0.966 0.962 0.962 0.955

Mathematics 0.10 PCD2 0.972 0.971 0.966 0.963 0.961 0.956

Study Skills 0.05 PCD2 0.941 0.941 0.941 0.941 0.941 0.941

Study Skills 0.10 PCD2 0.941 0.941 0.941 0.941 0.941 0.941

Total test 0.05 PCD3 1.000 0.952 0.935 0.914 0.895 0.880

Total test 0.10 PCD3 1.000 0.951 0.931 0.911 0.901 0.881

Language 0.05 PCD3 1.000 0.932 0.897 0.869 0.836 0.799

Language 0.10 PCD3 1.000 0.933 0.891 0.868 0.834 0.804

Mathematics 0.05 PCD3 1.000 0.912 0.886 0.847 0.826 0.805

Mathematics 0.10 PCD3 1.000 0.911 0.883 0.853 0.827 0.799

Note. Proportion of consistent decisions for classifications based on interval scores and for
the SPRT decisions for the total test (PCD1), proportion of consistent decisions for classi-
fications based on the ability estimates and for the SPRT decisions (PCD2) for decisions
measured with one ability, and proportion of consistent decisions for classifications with
200 and shorter tests (PCD3). Study Skills was not shortened because its components were
already short. α = β = acceptable error rates.

When the consistencies for the entire test, LAN, MAT, and SS for α = β = 0.05

and 0.10 were compared, it seemed that the decisions for individual examinees

were made independent of the size of α and β. This was not necessarily correct,

because decisions at the maximum test length could be based on Equation 3.6,

but they could also be calculated using the midpoint of β/(1 − α) and (1 − β)/α.

Which calculation was used depended on the possibility of stopping the test by

the SPRT. Thus, on an individual basis, the calculation of the decision and the

actual decision could have been different.

Consistency for Random Item Selection with Reduced Test Length

Table 3.1 also shows that if the test length was reduced, the classification consis-

tency for the entire test decreased. The PCD with the SPRT and the classifications

based on the intervals of the scale score decreased from 0.897 to 0.847. The consis-

tency between the SPRT classifications at the maximum and reduced test length

also decreased, from 0.952 to 0.880.
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If a larger value was specified for the acceptable error rates, α and β, an

unexpected result appeared. PCD1 increased in three out of five reduced test

lengths. It was expected that the PCD1s would have remained equal or decreased.

This increase was explained by the instability of the classifications of examinees

whose ability was close to a cutoff point for the SPRT or close to a border value

in the scale score classifications. The PCD3 measure decreased in three out of

five test lengths. It was expected that the consistency would decrease because

more decisions were calculated using the midpoint of β/(1 − α) and (1 − β)/α

at a shorter test length. If a decision had to be forced, not enough evidence was

available for using the decision rules in Equation 3.6. This suggested that the

decisions would have differed more often. The increased PCDs were probably

caused by the fact that if α and β were increased, the midpoint was used more

often for calculating the decisions with 200 items.

The classification consistency between the SPRT at the maximum and reduced

test length for LAN decreased from 0.933 to 0.799. This PCD also decreased a lot

for MAT. The decrease in the PCD2 for MAT was much smaller than for the PCD3.

This suggested that if test length was reduced much, classifications with the SPRT

would become different. This could become a problem because the test stakes

were high.

Test length was never reduced for SS because all of its components consisted

of 10 items. A lower test length per component was considered undesirable in

advance, so tests were never shortened. This implied that consistency could be

determined only based on the classifications by the SPRT and the ability estimate.

This also implied that simulations for SS were not repeated with the other item

selection methods.

Consistency for Item Selection with the Ability Estimate with Reduced Test

Length

If an information-based selection method was used instead of random selection,

higher PCDs can be expected (Van Groen et al., 2014b, 2014a). As shown in Table

3.2, the PCD1 and the PCD3 on the entire test also decreased if the test length was

decreased. If a higher value for α and β was specified, PCD1 decreased in two

out of five test lengths. The classifications for the PCD3 measure were different

only if the test length was reduced to 150 or 160. The PCDs of Language also

dropped considerably. If the test length was reduced, the PCD3 measure started

to increase if a higher value was set for α and β. This was not expected since a
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Table 3.2
Proportion of Consistent Decisions for Different Test Lengths with Item Selection by Maximization
at the Current Ability Estimate

Decision α, β Consistency 200 190 180 170 160 150

Total test 0.05 PCD1 0.897 0.890 0.879 0.872 0.859 0.848

Total test 0.10 PCD1 0.897 0.887 0.880 0.871 0.861 0.850

Mathematics 0.05 PCD2 0.972 0.970 0.965 0.965 0.966 0.959

Mathematics 0.10 PCD2 0.972 0.969 0.966 0.966 0.964 0.961

Total test 0.05 PCD3 1.000 0.969 0.951 0.935 0.921 0.902

Total test 0.10 PCD3 1.000 0.969 0.951 0.935 0.919 0.904

Language 0.05 PCD3 1.000 0.956 0.922 0.896 0.871 0.830

Language 0.10 PCD3 1.000 0.953 0.922 0.898 0.872 0.834

Mathematics 0.05 PCD3 1.000 0.947 0.918 0.889 0.867 0.849

Mathematics 0.10 PCD3 1.000 0.948 0.921 0.891 0.866 0.847

Note. Proportion of consistent decisions for classifications based on interval scores and for
the SPRT decisions for the total test (PCD1), proportion of consistent decisions for classi-
fications based on the ability estimates and for the SPRT decisions (PCD2) for decisions
measured with one ability, and proportion of consistent decisions for classifications with
200 and shorter tests (PCD3). Consistency for Study Skills is reported in Table 3.1. α = β

= acceptable error rates.

higher value should in theory result in less accurate decisions based on the SPRT.

The SPRT decisions for MAT remained very consistent with the decisions based on

the ability estimates if the test length was reduced. If the test length was reduced,

the decisions by the SPRT tended to become less consistent (PCD3).

Consistency for Item Selection with the Weighting Method with Reduced Test

Length

The decisions on the entire test became less consistent when the tests were shorter

(see Table 3.3). The consistency between the SPRT decisions and the decisions

based on the scale score became less consistent (0.897 to 0.848). The classifications

also became less consistent when the test length was reduced (PCD3). PCD1 and

PCD3 both decreased sometimes if α and β were increased but also increased

sometimes. The consistency of the LAN classifications by the SPRT and based on

the ability estimates decreased if fewer items were used. The differences in PCD3

between the analyses with α = 0.05 and α = 0.10 were small, but their direction

varied. The consistency between the SPRT decisions and the classifications based

on the ability estimates for MAT decreased slowly. The consistency of the decisions
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Table 3.3
Proportion of Consistent Decisions for Different Test Lengths with Item Selection by Weighting

Decision α, β Consistency 200 190 180 170 160 150

Total test 0.05 PCD1 0.897 0.888 0.880 0.871 0.861 0.848

Total test 0.10 PCD1 0.897 0.888 0.877 0.871 0.862 0.850

Mathematics 0.05 PCD2 0.972 0.970 0.966 0.965 0.964 0.961

Mathematics 0.10 PCD2 0.972 0.969 0.967 0.966 0.964 0.960

Total test 0.05 PCD3 1.000 0.968 0.950 0.935 0.923 0.906

Total test 0.10 PCD3 1.000 0.969 0.951 0.935 0.920 0.908

Language 0.05 PCD3 1.000 0.955 0.924 0.899 0.874 0.834

Language 0.10 PCD3 1.000 0.953 0.924 0.899 0.871 0.836

Mathematics 0.05 PCD3 1.000 0.948 0.921 0.891 0.867 0.847

Mathematics 0.10 PCD3 1.000 0.946 0.922 0.890 0.868 0.849

Note. Proportion of consistent decisions for classifications based on interval scores and for
the SPRT decisions for the total test (PCD1), proportion of consistent decisions for classi-
fications based on the ability estimates and for the SPRT decisions (PCD2) for decisions
measured with one ability, and proportion of consistent decisions for classifications with
200 and shorter tests (PCD3). Consistency for Study Skills is reported in Table 3.1. α = β

= acceptable error rates

by the SPRT at the maximum test length and shorter test lengths declined much

faster. If the acceptable error rates were increased, the differences in PCD2 and

PCD3 were small, but the direction of the differences varied.

Consistency for Different Item Selection Methods with Reduced Test Length

The consistency of the decisions on the entire test, LAN, and MAT was also

compared for different item selection methods. The differences in the consistency

of the decisions on the entire test were very small for the PCD1 measure. At some

test lengths, random item selection appeared to result in more consistent decisions

than the other two methods. However, random selection could have resulted in the

same incorrect classifications as the scale score classifications. In such situations,

other item selection methods could have resulted in correct classifications, but

they appeared to be inconsistent.

Random item selection was clearly outperformed by the other two methods on

LAN. The consistency between the SPRT at the maximum test length and at the

reduced test length was higher for the two information-based methods.

The differences in consistency on MAT were small for the PCD2. Depending on

the test length, random or information-based methods resulted in more consistent
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decisions. Random selection resulted in less consistent decisions, when the

classifications at the maximum and reduced test lengths were compared (PCD3).

The differences between the weighting method and the item selection method

based on the ability estimate were very small. The weighting method outperformed

the other method in four out of five test lengths. It appeared that the weighting

method resulted in the most consistent decisions, independent of test length.

Consistency on the Components with Reduced Test Length

Consistency was also investigated for decisions based on the LAN, MAT, and

SS components (see Table 3.4). Per decision, the PCDs for the SPRT and the

classifications based on the ability estimates (PCD2), and the consistency at 200

items and 180 items (PCD3), are reported. For each decision, the consistency is

reported for α = 0.05 and for three item selection methods.

The consistency, as measured with the PCD2 measure, of the LAN components

with 200 items was always above 0.900. The consistency between the SPRT

decisions and the classifications based on the ability estimates did not differ much

among the item selection methods. The PCD3 measure for the LAN components

clearly indicated that decisions were different for 180 and 200 items and for

different item selection methods. The differences between the weighting and

estimate methods were small, but when these methods were compared with

random item selection the differences were larger.

The differences in the consistency of WR and TC for different item selection

methods were smaller than for other components. This decrease was caused by

the existence of testlets in these components. Testlet item selection resulted in

the inclusion of items that would not have been selected if items had not been

combined into testlets.

The classification consistency for MAT was around 0.900 with 200 items. Re-

markably, the consistency of the SPRT and the ability estimates increased when

the test length was reduced. The classifications by the SPRT at the maximum test

length were more consistent with the classifications at reduced test length for the

information-based item selection methods than for random item selection. The

decisions for the SS components were relatively inconsistent (PCD2<0.900). This

was probably caused by the low number of items per component.
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Table 3.4
Proportion of Consistent Decisions for Decisions with a Reduced Test Length for Language,
Mathematics, and Study Skills

Test length Random Weighting Estimate

Decision 200 180 Consistency 200 180 180 180

WR 30 26 PCD2 0.926 0.896 0.895 0.896

TC 30 26 PCD2 0.923 0.914 0.916 0.915

VO 20 17 PCD2 0.945 0.935 0.939 0.939

SP 20 20 PCD2 0.919 0.919 0.919 0.919

SPNV 10 10 PCD2 0.907 0.907 0.907 0.907

SPV 10 10 PCD2 0.903 0.903 0.903 0.903

MGTM 15 13 PCD2 0.889 0.924 0.926 0.942

RFP 20 17 PCD2 0.903 0.921 0.917 0.937

NC 25 21 PCD2 0.922 0.930 0.935 0.936

ST 10 10 PCD2 0.895 0.895 0.895 0.895

IS 10 10 PCD2 0.873 0.873 0.873 0.873

GE 10 10 PCD2 0.797 0.797 0.797 0.797

TG 10 10 PCD2 0.819 0.819 0.819 0.819

WR 30 26 PCD3 1.000 0.800 0.823 0.823

TC 30 26 PCD3 1.000 0.801 0.862 0.868

VO 20 17 PCD3 1.000 0.726 0.845 0.842

MGTM 15 13 PCD3 1.000 0.786 0.846 0.838

RFP 20 17 PCD3 1.000 0.807 0.867 0.866

NC 25 21 PCD3 1.000 0.811 0.868 0.866

Note. Proportion of consistent decisions for classifications based on the ability estimates
and for the SPRT decisions (PCD2). WR: Writing; TC: Text Comprehension; VO: Vo-
cabulary; MGTM: Measurement, Geometry, Time & Money; RFP: Relations, Fractions &
Percentages; NC: Numbers & Computations; ST: Study Texts; IS: Information Sources; GE:
Geography; TG: Tables & Graphs. Decisions for the components of Spelling and Study
Skills were never shortened due to the already limited test length.

Cross-Validation of the Results

One important aspect of developing a test is to ensure that the results gathered

during the analyses are valid for other sets of examinees as well. The End of

Primary School Test was calibrated with 10% of the 2012 examinees. All analyses

were repeated with nine other datasets consisting of 10% of the examinees each.

The results for the entire and reduced test length (180) analyses with α = 0.05

are presented in Table 3.5. The range in PCD was very small for the 10 datasets.

These results implied that the item parameters from dataset 1 were representative
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Table 3.5
Cross Validation of the Reported Proportions of Consistent Decisions

Random Estimate Weighting

Decision Consistency 200 180 180 180

Total test PCD1 0.895-0.901 0.878-0.886 0.876-0.884 0.877-0.882

Mathematics PCD2 0.969-0.973 0.965-0.968 0.965-0.971 0.966-0.970

Study skills PCD2 0.934-0.941 0.934-0.941 0.934-0.941 0.934-0.941

Total test PCD3 1.000-1.000 0.926-0.935 0.948-0.953 0.948-0.953

Language PCD3 1.000-1.000 0.886-0.897 0.915-0.925 0.918-0.925

Mathematics PCD3 1.000-1.000 0.880-0.890 0.917-0.924 0.917-0.926

Note. Proportion of consistent decisions for classifications based on interval scores and
for the SPRT decisions on the entire test (PCD1), proportion of consistent decisions for
classifications based on the ability estimates and for the SPRT decisions for decisions
measured with one ability (PCD2), and proportion of consistent decisions for classifications
with 200 and shorter tests (PCD3). Study Skills was never shortened due to the already
limited test length of its components.

of the other datasets and that the consistency of the results was comparable over

datasets. This last finding implies that the selected settings for the SPRT resulted

in very consistent findings for different datasets.

3.7 Conclusions and Discussion

MCATs can be used to obtain an efficient ability estimate or a classification decision.

In multidimensional classification testing, two methods are required. One method

selects the items, and the second method determines whether testing can be

stopped and which decision is made.

Several item selection methods are available for MCATs with ability estima-

tion (Luecht, 1996; Mulder & Van der Linden, 2009; Reckase, 2009; Segall, 1996;

Veldkamp & Van der Linden, 2002; Yao, 2012), but specialized methods for classifi-

cation testing are scarce (Van Groen et al., 2014b). Seitz and Frey (2013) selected

items using a method that was developed to obtain an efficient ability estimate

(Segall, 1996). Here, items were also selected using a method that incorporated the

ability estimate and the cutoff points into the selection procedure. This weighting

method was developed for unidimensional classification testing (Van Groen et

al., 2014a), but it could be used for MCAT with between-dimensionality. Using

an empirical example, this method resulted in more consistent decisions than
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selecting items using Segall’s (1996) method, which was used by Seitz and Frey

(2013). The differences in consistency were small except for random item selection.

A classification method to make multidimensional decisions was developed by

Van Groen et al. (2014b) when each item measures multiple abilities. Seitz and

Frey (2013) developed a method to make multidimensional decisions for tests in

which each item measures one dimension. Their method makes a decision per

dimension, but it cannot make a decision over all dimensions. Seitz and Frey’s

(2013) method was expanded here so that (a) a classification decision can be made

on the entire test, (b) classification decisions can be made on several dimensions,

and (c) classification decisions can be made on a part of the items for a dimension.

The expansions make it possible to report an elaborate knowledge profile per

examinee based on the examinee’s answers. Per test, several decisions can be

made, and per decision, several decision levels can be used. These knowledge

profiles can be used by teachers to adapt their instruction to the examinee’s ability.

A measure was developed for reporting the support for the decisions by the

SPRT. The measure can be used for reporting, to examinees and their teachers,

whether enough support was gained to make a decision or that the decision was

forced by reaching the end of the test. The interpretation of the support measure

is independent of the specifications that were used to make the decision, and

the values of the measure can be compared between decisions. The support

measure can be used for all SPRTs that are based on the decision rules, as specified

here. This implies that the measure can also be used for unidimensional and

within-dimensional classification decisions.

3.7.1 Future Directions and Further Remarks

The analyses were run with a fixed test length, although test length was often

reduced to a fixed lower number. The reason for fixing the test length was that

hardly any tests were shortened by the SPRT in initial analyses with a flexible test

length. As Seitz and Frey (2013) reported, the average test length required to make

decisions increases if the number of cutoff points increases. Four cutoff points

were specified in the example, which is one explanation for the high number of

tests that were stopped at maximum test length. A second explanation is that the

test length of the components of the test had already been optimized by the test

developers. In real tests, test length is a compromise between accurate scale scores

and testing time. This makes it difficult to reduce test length even further.
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Some directions for future research were specified. Other classification methods

could be developed for MCAT because only methods based on the SPRT are

available. Currently, only three item selection methods have been investigated for

between-dimensionality classification testing. Other existing methods for UCAT

and MCAT could also be investigated. Classification and item selection methods

could also be developed for other multidimensional IRT models, such as models in

which abilities cannot compensate each other or models with a guessing parameter.

Also more knowledge about the differences and similarities of within- and

between-dimensionality is welcome. Comparisons could also be made between

unidimensional and between-dimensional models. The accuracy of decisions with

a unidimensional classification method for data simulated with a multidimen-

sional model could also be investigated. Since real data were used here, no true

classification was available. This implied that it was not possible to investigate it

here. Current research on MIRT and MCAT uses Bayesian ability estimates. The

prior required for Bayesian computations influences the ability estimates, espe-

cially at the start of the test. This implies that more research could be conducted

on (weighted) maximum likelihood alternatives, in which no prior is required.

More studies are welcome on practical implementations of MCAT because few

studies available concern applications, or use empirical data. Typically, simulations

are run with an empirical or simulated item bank. Interesting complications arise if

actual test data are used. Although no "true" classification is available, effectiveness

of CAT methods can be studied only with real data. Furthermore, more knowledge

is welcome about the way test results are reported to examinees and teachers. Test

results can be used only for educational improvement if the methods of reporting

them is closely aligned with the testing purpose.
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Chapter 4

Multidimensional Computerized Adaptive Testing for

Classifying Examinees on Tests with

Within-Dimensionality

Abstract

A classification method is presented for adaptive classification testing with a mul-

tidimensional item response theory model in which items are intended to measure

multiple traits, e.g., within-dimensionality. The reference composite is used in

conjunction with the sequential probability ratio test (SPRT) to make decisions

and decide whether testing can be stopped before the maximum test length is

reached. Item selection methods are provided that maximize the determinant of

the information matrix at the cutoff point or the projected ability estimate. A simu-

lation study illustrates the efficiency and effectiveness of the classification method

for different settings of the SPRT. Simulations were run with the two new item

selection methods, random item selection, and maximization of the determinant of

the information matrix at the ability estimate in the multidimensional space. The

study also showed that the multidimensional SPRT has the same characteristics

as the unidimensional SPRT and outperforms the unidimensional SPRT when

applied to multidimensional data.

This chapter has been submitted as Van Groen, M.M., Eggen, T.J.H.M., & Veldkamp, B.P.
(2014). Multidimensional Computerized Adaptive Testing for Classifying Examinees on Tests with Within-
Dimensionality. Manuscript submitted for publication.
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4.1 Introduction

Computerized adaptive testing (CAT) estimates ability precisely or makes accurate

decisions while minimizing test length. Much is known about unidimensional

CAT (UCAT), but knowledge about multidimensional CAT (MCAT) has especially

expanded over the last several years. Nevertheless, knowledge about MCAT to

make classification decisions using item response theory (IRT) is scarce.

Several classification methods are available for constructs modeled with a

unidimensional IRT model (Eggen, 1999; Spray, 1993; Weiss & Kingsbury, 1984).

However, if the construct is modeled using a multidimensional IRT (MIRT) model,

classification methods are available only for some situations. Seitz and Frey (2013)

developed a multidimensional classification method that makes a decision per

dimension using Wald’s (1947/1973) sequential probability ratio test (SPRT). This

method can be used if each item is assumed to measure only one trait. Spray,

Abdel-Fattah, Huang, and Lau (1997) investigated the use of the SPRT with MIRT

for items that are assumed to measure multiple traits. They concluded that

using the SPRT is not feasible, because the likelihood ratio cannot be updated with

unique probabilities after an additional item is administered. If a multidimensional

decision is required for testing with items that measure multiple traits, no method

is available. Therefore, a new method was developed to make such decisions.

The advantages of making multidimensional decisions are that the multidimen-

sional structure of the data is respected, adaptive testing principles can be used,

and test length is reduced even more than in MCAT for estimating ability.

IRT is often used for CAT and relates the score on an item based on the item

parameters and the examinee’s ability (Van der Linden & Hambleton, 1997). In

MIRT, a vector of person abilities describes the skills and knowledge that the

person brings to the test (Reckase, 2009). MIRT is discussed in the first part.

CAT for classification purposes requires two methods. One method decides

whether testing can be finished and which decision can be made regarding the

level of the examinee. The second method selects the items based on a statistical

criterion or on the examinee’s responses to previously administered items. A

new method to make multidimensional classification decisions and some existing

methods are discussed in the second part. Existing item selection methods for

unidimensional classification testing, available methods for MCAT for estimating

ability, and new methods for MCAT for classification testing are discussed in the

third part.
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The efficiency and effectiveness of the new classification and item selection

methods are illustrated using simulation studies. In the last section, some remarks

are made about multidimensional classification testing and directions for future

research.

4.2 Multidimensional Item Response Theory

A prerequisite for CAT is a calibrated item pool suitable for the specific testing

situation. In a calibrated item pool, the fit of the model is established, item

parameter estimates are available, and items with undesired characteristics have

been removed (Van Groen, Eggen, & Veldkamp, 2014). In MIRT, a set of p abilities

is assumed to account for the examinee’s responses to the items. The MIRT model

used here is the dichotomous two-parameter logistic model (Reckase, 1985), in

which the probability of a correct answer to item i is described by

Pi(θ) = P (xi = 1|ai, di, θ) =
exp(a′iθ+ di)

1 + exp(a′iθ+ di)
, (4.1)

where Pi(θ) is the probability of a correct answer xi = 1, ai is the vector of the

discrimination parameters, di denotes the easiness of the item, and θ is the vector

of the ability parameters. Items that have multiple non-zero parameters ai measure

multiple abilities, a situation in which within-item dimensionality is present (W.-

C. Wang & Chen, 2004). If just one discrimination parameter is non-zero for all

test items, the test is considered to have between-item dimensionality. The item

parameters are assumed to be estimated with enough precision to consider them

known during test administration (Veldkamp & Van der Linden, 2002).

Owing to the assumption of local independence, the probability of a correct

response to a set of items is a function of only the ability and item parameters

(Segall, 1996). The likelihood of a vector of observed responses xj to items

i = 1, · · · , k for an examinee j with ability θj equals the product of the probabilities

associated with the responses to the administered items (Segall, 1996):

L
(
θj|xj

)
=

k

∏
i=1

Pi
(
θj
)xij Qi

(
θj
)1−xij , (4.2)

where Qi(θj) = 1− Pi(θj). The vector of values θ̂ = (θ̂1, · · · , θ̂p) that maximize the

likelihood function is taken as the estimate of ability θj (Segall, 1996). The equa-

tions for finding maximum likelihood (ML) estimates have no closed-form solution
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(Segall, 1996). An iterative search procedure, such as the Newton-Raphson method,

must be used to find the estimates. This procedure is described for weighted

maximum likelihood (WML) in the appendix. WML estimation, which was devel-

oped by Tam (1992) who extended Warm’s (1989) unidimensional estimator, was

applied because it reduces the bias in the ML estimates.

4.3 Classification Methods

Several termination methods exist for MCAT for estimating ability (C. Wang,

Chang, & Boughton, 2013; Yao, 2013), but the focus here is on methods for MCAT

for classification testing. These methods determine whether testing can be finished

and which decision is made before the maximum test length is reached (Van Groen

et al., 2014). Few methods are available to make classification decisions with MIRT.

These approaches are described first. Due to the limitations of the available

methods, in the final part of this section a new method is proposed to make

decisions.

4.3.1 Existing Multidimensional Classification Methods

Two studies about making decisions using MIRT exist (Seitz & Frey, 2013; Spray

et al., 1997). These studies concern MCAT with multiple unidimensional decisions

for between-dimensionality (Seitz & Frey, 2013) and about the multidimensional

SPRT for within-dimensionality (Spray et al., 1997).

MCAT for Between-Dimensionality

Seitz and Frey (2013) described an approach for MCAT in which multiple unidi-

mensional decisions are made. They based their method on the fact that, in case

of between-dimensionality, the multidimensional two-parameter logistic model is

a combination of unidimensional two-parameter logistic models (W.-C. Wang &

Chen, 2004). Seitz and Frey (2013) implemented the unidimensional classification

method based on the sequential probability ratio test (SPRT) per dimension.

The SPRT (Wald, 1947/1973) was applied to classification testing by Ferguson

(1969) using classical test theory and Reckase (1983) using IRT and used by Eggen

(1999), Spray (1993), and Thompson (2009), among others. If the SPRT is applied, a

cutoff point is set between adjacent levels with a surrounding indifference region.

This region accounts for the uncertainty of the decisions, owing to measurement

error, regarding examinees with ability values close to the cutoff point (Eggen,
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1999). Two hypotheses are formulated for the cutoff point, θc, using the boundaries

of the indifference region (Eggen, 2010):

H0 : θj < θc − δ; (4.3)

Ha : θj > θc + δ, (4.4)

in which δ denotes the distance between the cutoff point and the boundary of the

indifference region. The likelihood ratio between the hypotheses after k items are

administered is calculated for the unidimensional SPRT (Eggen, 2010):

LR (θc + δ; θc − δ) =
L
(
θc + δ; xj

)
L
(
θc − δ; xj

) , (4.5)

in which L
(
θc + δ; xj

)
and L

(
θc − δ; xj

)
are calculated using the unidimensional

version of Equation 4.2. Decision rules are used to decide to continue testing or to

decide that the student’s ability is below or above the cutoff point (Eggen, 1999):

administer another item if β/(1 − α) < LR(θc + δ; θc − δ) < (1 − β)/α;

ability below θc if LR(θc + δ; θc − δ) ≤ β/(1 − α); (4.6)

ability above θc if LR(θc + δ; θc − δ) ≥ (1 − β)/α,

where α and β specify the acceptable classification error rates (Spray et al., 1997).

A maximum test length is set in practical testing situations to ensure that testing

stops at some point (Eggen, 1999). At the maximum test length, the examinee is

classified as having ability above the cutoff point if the likelihood ratio is larger

than the midpoint of the interval of Equation 4.6.

Seitz and Frey (2013) implemented the SPRT by setting cut scores, θcl, for all

dimensions l = 1, · · · , p, with surrounding indifference regions. The SPRT is

calculated for each dimension p using

LR (θcl + δ; θcl − δ) =
L
(
θcl + δ, θ̂jc−l, x

)
L
(
θcl − δ, θ̂jc−l, x

) , l = 1, · · · , p, (4.7)

in which θcl − δ and θcl + δ are imputed for dimension l and θ̂jc−l denote the

provisional estimates for all dimensions except dimension l. Since no decision

is required on the other dimensions when making the decision for dimension l,

ability estimates are imputed for the other dimensions (Seitz & Frey, 2013). In the

case of between-dimensionality, Equation 4.7 reduces to
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LR (θcl + δ; θcl − δ) =
L
(
θcl + δ; xj

)
L
(
θcl − δ; xj

) , l = 1, · · · , p. (4.8)

If items load on multiple dimensions, Seitz and Frey’s (2013) method cannot be

used because the ratio does not reduce to Equation 4.8. Furthermore, the method

requires the specification of an additional decision rule if one global decision is to

be obtained for the test. This implies that Seitz and Frey’s (2013) method can be

used only for between-dimensional tests in which no overall decision is required.

MCAT for Within-Dimensionality

Spray et al. (1997) investigated the possibility of applying the SPRT to MCAT. They

specified a passing rate on a reference test with a standard setting method and

obtained an equivalent latent passing score by solving for θ. The ability values

that result in the passing rate define the curve in the multidimensional space

that divides the space into two mutually exclusive regions (Spray et al., 1997).

Surrounding this curve, the curves denoting the indifference region are formed.

According to Spray et al. (1997), the ability values that satisfy these curves do not

necessarily result in constant probability values for each item. This implies that

the likelihood ratio cannot be updated with a unique value for each item; thus,

the SPRT cannot be extended to the multidimensional setting.

4.3.2 A Classification Method for Within-Dimensionality

Since the likelihood ratio requires unique values for updating the ratio, a method

should be developed that results in unique values if the SPRT is to be applied. The

reference composite, which was developed by M. Wang (1985, 1986) and described

by Reckase (2009), reduces the multidimensional space to an unidimensional line.

By using the reference composite, the likelihood ratio can be updated with unique

values after an additional item is administered.

Reference Composite

The reference composite can be used to relate the multidimensional abilities to

a unidimensional line in the multidimensional space (Reckase, 2009). This line

describes the characteristics of the matrix of the discrimination parameters for

the set of items. All θ points can be projected on the reference composite. Using

projection, examinees are ranked on the reference composite. A higher value on

the reference composite denotes a students who is more able than a student with
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a lower value on the reference composite. To distinguish between ability in the θ

space and ability as projected on the reference composite, the latter will be called

proficiency ξ.

The direction of the reference composite is given by the eigenvector of the

aa′ matrix that corresponds to the largest eigenvalue of this matrix (Reckase,

2009). The p elements of the eigenvector are the direction cosines αξl for the

angle between the reference composite and the p dimension axes. The line is

drawn in the multidimensional space through the origin with the direction cosines

specifying the precise position of the line.

To calculate the proficiency, an additional line is drawn through the θ-point

and the origin (Reckase, 2009). The length of this line Lj for an examinee j from

the origin to θ̂j point is given by (Reckase, 2009)

Lj =

√√√√ p

∑
l=1

θ̂2
jl (4.9)

and the direction cosines for the line are calculated using (Reckase, 2009)

cos αjl =
θ̂jl

Lj
, l = 1, · · · , p, (4.10)

in which αjl is the angle between axis l and line Lj. The angle, αjξ = αjl −
αξl, between Lj and the reference composite is used to calculate the estimated

proficiency ξ̂ j on the reference composite (Reckase, 2009):

ξ̂ j = Lj cos αjξ ; (4.11)

The calculation of ξ̂ j is illustrated in Figure 4.1 for two dimensions.

Multidimensional Decision Making Using the Reference Composite

Using the reference composite, the examinees’ ability can be ranked on a uni-

dimensional line. The position of the reference composite is fixed before test

administration based on all items in the item pool. By fixing the reference compos-

ite, ability is measured on the same scale for all examinees and that it is possible

to set cutoff points.

The SPRT requires specifying a cutoff point, ξc, and the surrounding indif-

ference region. The cutoff point and δξ are set on the reference composite. The
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Figure 4.1. Projection of ability on the reference composite.

boundaries of the indifference region for the SPRT can be transformed to their

respective θ points using

θξc+δ
= cos αξ × (ξc + δξ); (4.12)

θξc−δ
= cos αξ × (ξc − δξ), (4.13)

where αξ includes all angles between the reference composite and the dimension

axis. The likelihood ratio in Equation 4.5 now becomes

LR
(
θξc+δ

; θξc−δ

)
=

L
(
θξc+δ

; xj
)

L
(
θξc−δ

; xj
) , (4.14)

which can be used to make multidimensional classification decisions with the

following decision rules

administer another item if β/(1 − α) < LR(θξc+δ
; θξc−δ

) < (1 − β)/α;

ability below ξc if LR(θξc+δ
; θξc−δ

) ≤ β/(1 − α); (4.15)

ability above ξc if LR(θξc+δ
; θξc−δ

) ≥ (1 − β)/α.

4.4 Item Selection Methods

The item selection method is a critical component of MCAT, because selecting

items that are too hard or too easy or provide little information results in tests

that do not function well (Reckase, 2009). Several methods are available for MCAT

for obtaining an efficient ability estimate (e.g., Luecht, 1996; Mulder & Van der

Linden, 2009; Reckase, 2009; Segall, 1996; Veldkamp & Van der Linden, 2002;

C. Wang, Chang, & Boughton, 2011; Yao, 2012, 2013). The literature also provides
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several methods for UCAT for classification testing (e.g., Eggen, 1999; Spray &

Reckase, 1994; Thompson, 2009) such as maximizing information at the cutoff

point or at the ability estimate. Nevertheless, methods to select items for MCAT to

make classification decisions are scarce. Seitz and Frey (2013) selected items using

Segall’s (1996) method for MCAT for estimating ability. This method is discussed

in the next section. Unidimensional item selection methods for classification

testing are described in the second section. In the third section, these methods are

adapted for application to MCAT using Segall’s (1996) item selection method.

4.4.1 An Item Selection Method for MCAT for Ability Estimation

The method that maximizes the determinant of the Fisher information matrix was

developed for MCAT for estimating ability (Segall, 1996). Fisher information is a

measure of the information in the observable variables on the ability parameters

(Mulder & Van der Linden, 2009). The elements of p× p matrix I(θ) for dimensions

l and m are defined as (Tam, 1992)

I(θl, θm) =
k

∑
i=1

∂
∂θl

Pi(θ)× ∂
∂θm

Pi(θ)

Pi(θ)Qi(θ)
=

k

∑
i=1

ailaimPi(θ)Qi(θ). (4.16)

Segall’s (1996) item selection method is based on the relationship between

the information matrix and the confidence region around the estimates (Reckase,

2009). In the multidimensional case, the confidence interval forms an ellipsoid

surrounding the estimate (Reckase, 2009). The method selects the item that results

in the largest decrement in the volume of the confidence ellipsoid (Segall, 1996).

Since the size of the confidence ellipsoid can be approximated by the inverse of

the information matrix, the item can be selected that maximizes (Segall, 1996)

max det

(
k

∑
i=1

I(θ̂j, xij) + I(θ̂j, xk+1,j)

)
, for k + 1 ∈ Vk+1, (4.17)

which is the determinant of the information matrix of the administered items

and the potential item k + 1. The left term denotes the information provided by

the items that were previously administered. The right term is the information a

potential item k + 1 can provide. The next item is administered that, when added

to the information matrix, will result in the largest determinant of the matrix. This

implies that the volume of the confidence ellipsoid around the ability estimate is

minimized (Reckase, 2009).
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4.4.2 Item Selection Methods for UCAT for Classification Testing

In unidimensional classification testing, two methods are commonly used in addi-

tion to random item selection. The first method maximizes Fisher information at

the ability estimate. Segall (1996) adapted this method for MCAT. The unidimen-

sional version minimizes the confidence interval surrounding the ability estimate

using

max Ii(θ̂j), for i ∈ Va, (4.18)

where Va denotes the set of items in the item bank still available for administration.

The second method maximizes Fisher information at a different point on the

ability scale. The method maximizes information at the cutoff point, which results

in the following objective function:

max Ii(θc), for i ∈ Va. (4.19)

In unidimensional IRT with the SPRT, maximizing information at the cutoff

point is considered to be the most efficient (Eggen, 1999; Spray & Reckase, 1994).

4.4.3 Item Selection Methods for MCAT for Classification Testing

Segall’s (1996) item selection method selects the item with the largest determinant

of the information matrix at the current ability estimate. When making multi-

dimensional classification decisions with the SPRT, this method can be adapted

to select items that maximize on some fixed point on the reference composite,

analogous to the item selection methods for unidimensional classification testing.

The first item selection method for multidimensional classification testing

maximizes the determinant of the information matrix at the projected ability

estimate. The rationale behind this method is that interest is limited here to

the points that fall on the reference composite, but not in all other points in the

multidimensional space. Thus maximizing at the reference composite seems to

make sense. The current ability estimate is estimated using weighted maximum

likelihood estimation (see Appendix). The estimate can be projected onto the

reference composite using Equation 4.11. To calculate the information matrix, ξ̂ j

is transformed to its corresponding point in the multidimensional space using

θξ̂ j
= cos αξ × ξ̂ j. The objective function for the item selection method then

becomes
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max det

(
k

∑
i=1

I(θξ̂ j
, xij) + I(θξ̂ j

, xk+1,j)

)
, for k + 1 ∈ Vk+1. (4.20)

The second item selection method for multidimensional classification testing

maximizes the determinant of the information matrix at the cutoff point on the

reference composite. This value is already on the reference composite, but has to

be transformed to the multidimensional θ space using

θc = cos αξ × ξc. (4.21)

The resulting objective function is

max det

(
k

∑
i=1

I(θc, xij) + I(θc, xk+1,j)

)
, for k + 1 ∈ Vk+1. (4.22)

4.5 Simulation Study

The effectiveness and the efficiency of the developed classification and item se-

lection methods were investigated using a simulation study. The results with

the multidimensional SPRT were evaluated using well-known characteristics of

the unidimensional SPRT. One well-known characteristic of the unidimensional

SPRT is that an increase in α and β often does not influence the accuracy of the

classifications, but shortens the test considerably (Eggen & Straetmans, 2000). An

increase in the size of δ also results in shorter tests, but does not influence accuracy

(Eggen & Straetmans, 2000). The item selection methods were compared with

random item selection. It was expected that maximizing the determinant of the

information matrix at the cutoff point, the projected ability estimate, or the ability

estimate would result in shorter and more accurate tests than selecting items at

random.

4.5.1 Simulation Design

An item pool from the ACT Assessment Program, which was used by Ackerman

(1994) and Veldkamp and Van der Linden (2002), was used to evaluate MCAT for

classification testing. The item pool consisted of 180 items, previously calibrated

with a two-dimensional compensatory IRT model with within-dimensionality

using NOHARM 4 (Fraser & McDonald, 1988). The fit of the MIRT model with

two dimensions was established (Veldkamp & Van der Linden, 2002). The items
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in the pool were previously classified according to the six content and three

skill categories used in the ACT Assessment Program (Veldkamp & Van der

Linden, 2002), but a two-dimensional model fitted the data. The means of the

discrimination parameters were 0.422 and 0.454 with standard deviation 0.268

and 0.198. The observed correlation between the parameters was 0.093, which

can be explained by the orthogonal constraint in the calibration. The mean of the

easiness parameter was -0.118 with standard deviation 0.568. The matrix of the

discrimination parameters resulted in angles between the dimension axis 1 and 2

with the reference composite of 44.621 and 45.379 degrees.

Simulations were run for four item selection methods: random selection and

maximization of information at the cutoff point, the projected ability estimate,

and the ability estimate. The maximum test length was set at 50 items, following

Veldkamp and Van der Linden (2002). The acceptable decision error rates α and

β were set equal in each simulation. α and β were set at 0.05 and 0.10 with

δ = 0.1, 0.2, and 0.3. The chosen values for α and β are commonly found in

unidimensional CCT. In each simulation, 1,000 simulees were generated from a

multivariate standard normal distribution. The correlation between the dimensions

was varied, ρ = 0.0, 0.3, and 0.6. The cutoff point was set at 0.0 at the reference

composite, which implied θξc = {0.0, 0.0} and was the midpoint of the ability

distribution. Each simulation condition was replicated 100 times.

A well-known characteristic of the unidimensional SPRT is that as ability

becomes closer to the cutoff point, the test length increases (Eggen & Straetmans,

2000), and the proportion of correct decisions nears 0.5 (Van Groen & Verschoor,

2010). Additional simulations were run to investigate the effect of the distance

between ability and the cutoff point. This study used 372,100 simulees: 100 at each

of 61 evenly spaced points on θ1 from −3 to 3 combined with the same number of

points on θ2. The maximum test length was again set at 50 items. α = β = 0.10,

δ = 0.20, the cutoff point was set at 0.0, and the items were selected by the method

that had the largest determinant of the information matrix at the cutoff point.

The multidimensional classifications were compared with unidimensional clas-

sifications in a third series of simulations. Although a two-dimensional model was

required for model fit, which implied the use of a multidimensional classification

method, a comparison was made with unidimensional classification testing. One

hundred datasets were generated consisting of 180 items and 10,000 simulees each.

The datasets were calibrated using NOHARM (multidimensional) and BILOG

(unidimensional). The cutoff points were set for each dataset and calibration at the
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median of the observed ability distribution. The indifference regions were set 0.1,

0.2, and 0.3 times the standard deviation of the observed ability distribution. This

ensured that the unidimensional and multidimensional classification decisions

were made using the same criteria, α = β = 0.05 and 0.10. Simulations were run

with a minimum test length of 3 and a maximum test length of 50 in addition to a

fixed test length of 50 items. To exclude the influence of item selection methods,

items were selected at random.

4.5.2 Dependent Variables

Efficiency of the multidimensional SPRT was evaluated with the average test

length (ATL), which was calculated per condition as the mean test length over

1,000 simulees of 100 replications. Although reducing the test length reduces

respondent burden, test development costs, and test administration costs, effective-

ness was considered to be more important. Effectiveness was investigated using

the proportion of correct decision (PCD). This was calculated per condition as the

mean of the PCD for each simulation over 100 replications. The PCD compared

the classification based on the reference composite used to generate the data with

the decisions by the SPRT. The decision based on the SPRT was compared to the

classification based on the θ used to generate data.

4.5.3 Simulation Results

Table 4.1 presents the ATL for different settings for the SPRT and with four item

selection methods. The performance of random item selection (RA), maximization

of the determinant of the information matrix at the projected ability estimate (PA),

ability estimate (AE), or the cutoff point (CP) was evaluated. RA resulted in the

longest tests. CP resulted in the shortest tests. An increase in α and β decreased

ATL with several items. An increase in δ also resulted in shorter tests. If the

correlation between the abilities was increased, the test length also decreased.

The effectiveness of the classification method is shown in Table 4.2. PCD is

given for simulations with different settings for the SPRT and with four item

selection methods. RA was the least accurate method. The PCD was lower

for the simulations with α = β = 0.05 than was specified beforehand. The

simulations with the other three item selection methods were more accurate, and

the differences between these were negligible. α, β, and δ appeared to have no

influence on the PCD. If the correlation between the abilities was higher, a more

accurate classification decision was made.
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Table 4.1
Average Test Length for Different SPRT Settings and Item Selection Methods

α = 0.05 α = 0.10

Condition δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.1 δ = 0.2 δ = 0.3

Random item selection

0.0 50.000 48.404 43.598 49.916 45.303 38.431

0.3 49.999 47.778 42.383 49.850 44.217 36.949

0.6 49.998 47.186 41.324 49.752 43.218 35.725

Item selection by maximization at the ability estimate

0.0 49.996 43.165 35.065 48.792 37.411 28.624

0.3 49.993 41.819 33.541 48.341 35.918 27.318

0.6 49.989 40.785 32.310 47.887 34.674 26.188

Item selection by maximization at the projected estimate

0.0 49.990 43.362 35.359 48.898 37.673 28.893

0.3 49.992 43.911 35.965 49.165 38.261 29.824

0.6 49.981 43.045 34.890 48.952 37.160 28.739

Item selection by maximization at the cutoff point

0.0 49.531 40.851 32.337 47.269 34.733 25.840

0.3 49.234 39.264 30.660 46.268 33.022 24.230

0.6 48.901 37.815 29.120 45.399 31.541 22.956

Note. The correlation between the abilities is provided in the column labeled Condition.
α = β = acceptable error rates; δ = distance between cutoff point and boundary of
indifference region.

Simulations were run to investigate whether the ATL and the PCD depended

in the same way on the distance between ability and the cutoff point as in the

UCCT. In Figure 4.2, the ATL and the PCD are shown for different combinations

of ability. The ATL increased considerably if the combination of both ability values

was close to the cutoff point. The PCDs for simulations with a combination of

ability values that was close to the cutoff point decreased considerably. If ability

was close to zero, the PCDs became close to 0.50. The PCDs were even lower than

0.50 for other combinations of θ values with a mean value near the cutoff point.

The ATL is shown in Table 4.3 for the UCCT and MCCT simulations with a

flexible test length, but not for the fixed 50-item tests. The ATL was almost equal

for the simulations with no correlation between abilities. If a correlation was

specified between the abilities, the ATL was much shorter for the MCCTs than for

the UCCTs. The differences in the ATL increased if a higher value was specified

for the correlations, α, β, or δ.
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Table 4.2
Proportion of Correct Decisions for Different SPRT Settings and Item Selection Methods

α = 0.05 α = 0.10

Condition δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.1 δ = 0.2 δ = 0.3

Random item selection

0.0 0.865 0.866 0.868 0.866 0.867 0.867

0.3 0.880 0.882 0.882 0.883 0.882 0.882

0.6 0.892 0.894 0.893 0.893 0.893 0.890

Item selection by maximization at the ability estimate

0.0 0.895 0.896 0.897 0.895 0.896 0.895

0.3 0.908 0.907 0.906 0.909 0.908 0.908

0.6 0.918 0.917 0.918 0.916 0.915 0.915

Item selection by maximization at the projected estimate

0.0 0.896 0.895 0.895 0.897 0.895 0.894

0.3 0.903 0.901 0.904 0.904 0.904 0.901

0.6 0.910 0.912 0.912 0.912 0.912 0.911

Item selection by maximization at the cutoff point

0.0 0.898 0.896 0.898 0.897 0.898 0.897

0.3 0.909 0.910 0.909 0.908 0.910 0.909

0.6 0.919 0.920 0.918 0.917 0.919 0.919

Note. The correlation between the abilities is provided in the column labeled Condition.
α = β = acceptable error rates; δ = distance between cutoff point and boundary of
indifference region.

The PCDs for the unidimensional versus multidimensional comparison study

are shown in Table 4.4. The differences between the PCDs for unidimensional and

classification testing were negligible. The only notable difference was if a large δ

was specified in conjunction with a high correlation and a high α.

4.5.4 Discussion of the Results

The main aim of the simulation study was to investigate whether typical character-

istics of the unidimensional SPRT also applied to the multidimensional SPRT using

a reference composite. The effect of the settings for α and β on the unidimensional

SPRT is that an increased value resulted in shorter tests, but accuracy was not in-

fluenced (Eggen & Straetmans, 2000). The simulations with the multidimensional

SPRT demonstrated similar effects on the PCD and the ATL. Another characteristic

of the unidimensional SPRT is that if the indifference region is increased, the ATL
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(a) Average test length (b) Proportion correct decisions

Figure 4.2. Average test length and proportion of correct decisions with maximization on
the cutoff point.

Table 4.3
Average Test Length for Different SPRT Settings for Unidimensional and Multidimensional
Classifications

α = 0.05 α = 0.10

Condition δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.1 δ = 0.2 δ = 0.3

UCCT flexible test length

0.0 49.999 48.242 43.312 49.892 45.010 37.964

0.3 49.975 46.165 39.744 49.426 41.791 33.816

0.6 49.834 43.858 36.523 48.539 38.731 30.415

MCCT flexible test length

0.0 49.999 48.251 43.325 49.896 45.012 37.938

0.3 49.534 42.937 35.381 47.895 37.677 29.084

0.6 44.986 32.209 23.441 40.191 25.877 17.321

Note. Simulations for unidimensional (UCCT) and multidimensional classification testing
(MCCT) with a flexible test length and random item selection. The correlation between
the abilities is provided in the first column. α = β = acceptable error rates; δ = distance
between cutoff point and boundary of indifference region

decreases, and the PCD is not influenced (Eggen & Straetmans, 2000). The same

was found for the multidimensional SPRT. A third characteristic typical of the

SPRT is inaccuracy if ability approaches the cutoff point (Van Groen & Verschoor,

2010). The simulations showed that the tests were considerably longer if the

distance between the cutoff point and the combination of the ability values became
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Table 4.4
Proportion of Correct Decisions for Different SPRT Settings for UCCT and MCCT

α = 0.05 α = 0.10

Condition δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.1 δ = 0.2 δ = 0.3

UCCT flexible test length

0.0 0.867 0.867 0.886 0.867 0.866 0.866

0.3 0.882 0.881 0.881 0.882 0.881 0.881

0.6 0.889 0.889 0.889 0.889 0.889 0.888

UCCT fixed test length

0.0 0.867 0.867 0.867 0.866 0.866 0.867

0.3 0.881 0.881 0.881 0.881 0.881 0.881

0.6 0.889 0.889 0.889 0.889 0.889 0.889

MCCT flexible test length

0.0 0.867 0.865 0.866 0.866 0.866 0.866

0.3 0.881 0.881 0.881 0.881 0.880 0.879

0.6 0.888 0.888 0.881 0.888 0.884 0.867

MCCT fixed test length

0.0 0.866 0.866 0.866 0.866 0.866 0.866

0.3 0.881 0.881 0.881 0.881 0.881 0.881

0.6 0.888 0.888 0.888 0.888 0.888 0.888

Note. Simulations for unidimensional (UCCT) and multidimensional classification test-
ing (MCCT) with a fixed (50) and flexible test length and random item selection. The
correlation between the abilities is provided in the first column.

very small. In the multidimensional case, this finding applied to all possible

combinations of ability whose mean was close to the cutoff point.

The results of the simulation study were also in line with previous unidimen-

sional findings by Spray and Reckase (1994), Eggen (1999), and Thompson (2009),

in which selecting the items by maximizing the information at the cutoff point

was the most efficient. Selecting the items that had the largest determinant of the

information matrix at the cutoff point on the reference composite also resulted in

the multidimensional case in the shortest tests. As expected, the other methods

outperformed random item selection.

In the third part of the simulation study, the multidimensional SPRT resulted in

much shorter tests than the unidimensional SPRT without influencing classification

accuracy. If a multidimensional IRT model improves model fit for a specific dataset,

the use of a multidimensional classification procedure not only makes sense from

a philosophical point of view but also reduces test length considerably.
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4.6 Conclusions and Discussions

A classification method was developed to make classification decisions in tests

with items that are intended to measure multiple traits. The method can be

used in testing situations in which the construct of interest is modeled using a

multidimensional item response theory model. A reference composite is con-

structed in the multidimensional space. This reference composite is used to make

multidimensional classification decisions with the sequential probability ratio test.

Segall’s (1996) item selection method was adapted to select items that had the

largest determinant of the information matrix at the cutoff point or the current

projected ability estimate. The methods use the θ point that corresponds to the

intended point on the reference composite. The method based on the (projected)

ability estimates uses the weighted maximum likelihood estimator developed by

Tam (1992). The Newton-Raphson method was used for finding the values of the

weighted maximum likelihood estimates (see Appendix).

Simulations were used to investigate the average test length, the proportion

of correct decisions, and the characteristics of the classification method. The

efficiency and the accuracy were compared for different item selection methods

and different settings for the classification method.

The differences in efficiency and effectiveness between the item selection meth-

ods appeared to be small. The settings of the classification method had more

influence on the average test length than on the proportion of correct decisions.

Tests could be shortened considerably without much effect on the accuracy of the

decisions. It was established that the multidimensional classification method had

the same characteristics as the unidimensional version of the same method. The

settings of the SPRT had the same influence as on the unidimensional SPRT. It was

also shown that if the unidimensional SPRT was used for multidimensional data,

the test length increased considerably.

4.6.1 Future Directions and Further Remarks

The current simulations were run with an item pool in which each item measured

multiple dimensions. If the items load on one dimension, the new classification

method cannot be used. If each item measures just one dimension, the non-

diagonal elements of the aa
′

matrix are zero. The eigenvalues and the eigenvectors

of such a matrix do not make sense, and the resulting classification decisions are

solely based on the dimension that discriminates the most.
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As an example, simulations were run with an item pool that had been calibrated

with a two-dimensional model. The classification method can be applied to models

with more dimensions. A fixed test length can also be specified when using the

SPRT. The method makes a classification decision after testing has ended.

In the current study, decisions were made based on the total set of items

administered. Reckase (2009) showed that reference composites can be constructed

for underlying domains as well. Investigating whether it is possible to classify

at these domains as well would be interesting. Such classifications can provide

information regarding the level of the examinees for the underlying domains.

The current version of the SPRT is used to classify into one of two levels.

It is expected that an adaptation to the multidimensional classification method

similar to that of Spray (1993) or Eggen and Straetmans (2000) for unidimensional

classification testing can be made. This would enable test developers to classify

examinees into one of multiple levels, such as basic, proficient, and advanced.

The simulations in the current study used an item bank in which dimensions

were restricted to be orthogonal at each other. Although it has been shown in the

past (Ackerman, 1994; Veldkamp & Van der Linden, 2002) that the model fits the

data, fit of a model with orthogonality constraints cannot always be established

for other datasets. The SPRT as described here can also be used if orthogonality

is not assumed. The effects of fitting an orthogonal model and a not-orthogonal

model to the same dataset should be investigated, and their resulting classification

decisions should be compared.

A weighted maximum likelihood estimator was used in the current study.

The effectiveness and efficiency of the estimator has not been intensively studied

and should be compared with other estimators. If the estimator is used for

other studies, the researcher should investigate the appropriateness of using the

estimator for the intended study.

In actual testing programs, constraints have to be met for the content of the test,

and attention has to be paid to item exposure. In adaptive testing, implementing

content or exposure control often results in longer tests. The effects of content and

exposure control should be investigated before the multidimensional classification

method is applied in actual testing programs.
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Appendix: Weighted Maximum Likelihood Estimation

Ability can be estimated using the weighted maximum likelihood estimator. Tam

(1992) developed a weighted maximum likelihood estimator for multidimensional

IRT similar to Warm’s (1989) weighted maximum likelihood estimator for unidi-

mensional IRT. This estimator reduces the bias in the estimate (Tam, 1992). In

weighted maximum likelihood estimation, the following set of equations has to be

solved (Tam, 1992)
∂

∂θ
[ln L (θ|x)] + ∂

∂θ
[ln w(θ)] = 0, (4.23)

in which the first part denotes the derivatives of the natural logarithm of Equation

4.2 and the second part the weights that reduce the bias in the estimates. The

natural logarithm of both parts is used because it simplifies the calculations. The

set of likelihood equations is (Segall, 1996)

∂

∂θ
[ln L (θ|x)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂θ1

ln L (θ|x)
∂

∂θ2
ln L (θ|x)

...

∂
∂θp

ln L (θ|x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.24)

In the two-parameter MIRT model, the partial derivatives for θl reduce to

∂

∂θl
[ln L(θ|x)] =

k

∑
i=1

ail[xi − Pi(θ)] l = 1, . . . , p, (4.25)

in which ail denotes the discrimination parameter for dimension l for item i.

The weighting function that Tam (1992) developed is given by

∂

∂θ
[ln w(θ)] = −I(θ)× B(θ), (4.26)

in which I(θ) is the Fisher information that the administered items provide for

estimating the ability parameters (see Equation 4.16), and B(θ) denotes the factor

that reduces the bias in the estimates. The factor that reduces the bias in the WML

estimate for dimension l is given by (Tam, 1992)

B(θl) =
−J(θl)

2I(θl, θl)2 l = 1, . . . , p, (4.27)
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where J(θl) is an element of a p × 1 matrix J (Tam, 1992):

J(θl) =
k

∑
i=1

(
∂

∂θl
Pi(θ)× ∂2

∂θ2
l
Pi(θ)

)
Pi(θ)Qi(θ)

=
k

∑
i=1

a3
ilPi(θ)Qi(θ)

2 − a3
ilPi(θ)

2Qi(θ). (4.28)

Using Equations 4.16, 4.25, 4.26, and 4.27, the sets of equations 4.23 that have

to be solved become

k

∑
i=1

ail[xij − Pi(θ)]−
p

∑
m=1

[
I(θl, θm)× −J(θm)

2I(θm, θm)2

]
= 0 l = 1, . . . , p. (4.29)

The equations to find the (weighted) maximum likelihood estimates have no

closed-form solution, so an iterative numerical procedure has to be used (Segall,

1996). Several procedures can be used to find the estimates, such as Fisher’s

method of scoring (Kale, 1962), the Newton-Raphson method, and the false posi-

tioning method. The Newton-Raphson method was used in this study to find the

estimates. Segall (1996) used this procedure to find maximum likelihood estimates.

To find the weighted maximum likelihood estimates, the procedure was adapted

to include the weighting part of Equation 4.29. The Newton-Raphson method does

not converge when the second derivatives of the functions are infinite (Hambleton

& Swaminatan, 1985). As an indication of a possible lack of convergence, the

difference between iterations can be used. A small comparison study showed that

the Newton-Raphson method resulted in more accurate estimates than the false

positioning method. However, if the Newton-Raphson method did not appear to

converge, the estimation algorithm switched toward the false positioning method.

The estimation method also changed if the difference between iterations is very

large. Both methods are described in the following sections.

WML Estimation Using the Newton-Raphson Method

The update function for the Newton-Raphson method for iteration j + 1 has the

general form (Segall, 1996)

θ(j+1) = θ(j) − Δ(j), (4.30)

in which Δ(j) is described by Segall (1996) as

Δ(j) =
f (θ)

∂
∂θ [ f (θ)]

, (4.31)



Chapter 4. Within-Dimensional Classification Testing 97

in which

f (θ) =
∂

∂θ
[ln L (x|θ)] + ∂

∂θ
[ln w(θ)] , (4.32)

and
∂

∂θ
[ f (θ)] =

∂2

∂θ2 [ln L (x|θ)] + ∂2

∂θ2 [ln w(θ)] . (4.33)

All elements of Equation 4.32 were provided in the previous section. The

elements of the second partial derivative for dimension l of the likelihood part in

Equation 4.33 are given by

∂2

∂θ2
l
[ln L(θ|x)] = ∂

∂θl

[
k

∑
i=1

ail[xij − Pi(θ)]

]
=

k

∑
i=1

−a2
ilPi(θ)Qi(θ) l = 1, . . . , p.

(4.34)

The elements of the second partial derivative of the weighting part of Equation

4.33 become

∂2

∂θ2
l
[w(θ)] =

∂

∂θl

[
p

∑
m=1

(
I(θl, θm)×−J(θm)

2I(θm, θm)2

)]

=
p

∑
m=1

2I(θl, θm)J(θm)
∂

∂θl
[I(θm, θm)]

2I(θm, θm)3

−
p

∑
m=1

∂
∂θl

[I(θl, θm)]J(θm)I(θm, θm)

2I(θm, θm)3

−
p

∑
m=1

I(θl, θm)
∂

∂θl
[J(θm)] I(θm, θm)

2I(θm, θm)3 . (4.35)

The remaining elements of Equation 4.35 are specified by

∂

∂θl
[I(θl, θm)] =

k

∑
i=1

∂

∂θl
[ailaimPi(θ)Qi(θ)]

=
k

∑
i=1

a2
il aimPi(θ)Qi(θ)

2 − a2
il aimPi(θ)

2Qi(θ), (4.36)

and

∂

∂θl
[I(θm, θm)] =

k

∑
i=1

∂

∂θl
[a2

imPi(θ)Qi(θ)]

=
k

∑
i=1

aila2
imPi(θ)Qi(θ)

2 − aila2
imPi(θ)

2Qi(θ), (4.37)
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and

∂

∂θl
[J(θm)] =

k

∑
i=1

aila3
imPi(θ)Qi(θ)

3 − 4aila3
imPi(θ)

2Qi(θ)
2 + aila3

imPi(θ)
3Qi(θ).

(4.38)

The iterations of the Newton-Raphson procedure continue until the differences

between the estimates for different iterations become very small (for example,

0.0001). If the Newton-Raphson method does not converge, the false positioning

method can be used instead.

WML Estimation Using False Positioning Method

Another numerical iterative procedure to find the weighted maximum likelihood

estimates is the false positioning method, also known as regula falsi. This method

searches iteratively on an interval consisting of a set of two reasonable values for

θ (Van Ruitenburg, 2006) for each dimension; for example, the vector θl = −5

contains reasonable values for the left boundary of the interval and θr = 5 for

the right boundary. The derivative of the weighted maximum likelihood equation

Equation 4.32 is calculated for each dimension m using

∂

∂θml
f (θ) =

∂

∂θml
[ln L (θ|x)] + ∂

∂θml
[ln w(θ)] m = 1, · · · , p, (4.39)

and

∂

∂θmr
f (θ) =

∂

∂θmr
[ln L (θ|x)] + ∂

∂θmr
[ln w(θ)] m = 1, · · · , p. (4.40)

In each iteration, a straight line is drawn through the points (θml; ∂
∂θml

f (θ)) and

(θmr; ∂
∂θmr

f (θ)) for each dimension m (Van Ruitenburg, 2006). A new replacement

point θs is determined per dimension based on the point where the line meets the

dimension axis using (Press, Flannery, Teukolsky, & Vetterling, 1989)

θms = θml −
∂

∂θml
[ f (θml)] (θmr − θml)

∂
∂θmr

[ f (θmr)]− ∂
∂θml

[ f (θml)]
m = 1, · · · , p. (4.41)

The slopes are calculated at point θs for all dimensions:

∂

∂θms
f (θ) =

∂

∂θms
[ln L (θ|x)] + ∂

∂θms
[ln w(θ)] m = 1, · · · , p. (4.42)
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If the slope for dimension m is positive, point θms replaces the left boundary

on the interval for dimension m. If the slope is negative, the right boundary

is replaced. After replacement, a new point θms is calculated. Iteratively, the

procedure is repeated until the size of the interval becomes very small (for example,

< 0.0001) for each dimension. The point θms is then used as the ability estimate.





Chapter 5

Multidimensional Computerized Adaptive Testing for

Classifying Examinees with the SPRT and the

Confidence Interval Method

Abstract

Computerized adaptive tests (CATs) were developed to obtain efficient estimates

of the examinee’s abilities, but they can also classify examinees into one of two or

more levels. Several methods are available to make the classification decisions for

constructs modeled with a unidimensional item response theory model. These

methods stop testing when enough confidence has been reached to make a decision.

However, if the construct is multidimensional, few classification methods are

available. Classification methods based on Wald’s Sequential Probability Ratio

Test are available for application to CAT with a multidimensional item response

theory model in which items measure one or multiple abilities. It was investigated

in the current study whether it was possible to adapt the popular unidimensional

confidence interval method to make decisions on the entire test if each item

measures only one dimension and to make decisions if items measure multiple

dimensions. Simulation studies were used to investigate and compare the efficiency

and effectiveness of the classification methods. Comparisons were made between

different item selection methods, between different classification methods, and

between different settings for the classification methods.

This chapter has been submitted as Van Groen, M.M., Eggen, T.J.H.M., & Veldkamp, B.P. (2014).
Multidimensional Computerized Adaptive Testing for Classifying Examinees with the SPRT and the
Confidence Interval Method. Manuscript submitted for publication.
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5.1 Introduction

Traditionally, the goal of a computerized adaptive test (CAT) was to obtain a

precise and efficient ability estimate for the examinee. In one type of CAT, comput-

erized classification testing (CCT), the goal is to obtain an accurate and efficient

classification decision. Test length is minimized in CCT, while the desired accuracy

of the decisions is maintained. A large body of literature is available on CATs, but

knowledge about multidimensional CATs (MCATs) to make classification decisions

is still scarce (Seitz & Frey, 2013a, 2013b; Spray, Abdel-Fattah, Huang, & Lau, 1997;

Van Groen & Eggen, 2014; Van Groen, Eggen, & Veldkamp, 2014b).

MCATs can be constructed using multidimensional item response theory

(MIRT). A vector of person abilities is used in MIRT to describe the skills and

knowledge required for answering an item (Reckase, 2009). Two types of multidi-

mensionality can be modeled using MIRT: between- and within-dimensionality

(W.-C. Wang & Chen, 2004). Between-dimensionality implies that each item

measures only one ability, and a between-dimensional test contains several uni-

dimensional subscales (Hartig & Höhler, 2008). Items are intended to measure

multiple abilities on tests with within-dimensionality (W.-C. Wang & Chen, 2004).

An MCAT for making classification decisions requires a method that decides

whether enough evidence is available to make the decision and which decision is

made. Two well-known unidimensional methods, the sequential probability ratio

test (SPRT) (Eggen, 1999; Reckase, 1983; Spray, 1993) and the confidence interval

method (Kingsbury & Weiss, 1979), were adapted for MCAT.

For between-dimensionality, Seitz and Frey (2013a) developed a method to

make decisions per dimension using the SPRT. This method was extended to make

classification decisions on all dimensions simultaneously, on several dimensions,

and on subsets of items by Van Groen and Eggen (2014). Seitz and Frey (2013b) also

adapted Kingsbury and Weiss’s (1979) confidence interval method. This method is

extended in the current study to make decisions on the complete multidimensional

test and on subtests.

Only one classification method exists for within-dimensionality. Van Groen et

al. (2014b) developed a classification method using the SPRT. The multidimen-

sional space has to be reduced to a unidimensional line, the reference composite

(M. Wang, 1985, 1986 as described in Reckase (2009)), before a classification de-

cision can be made. A second method is developed here to make classification

decisions using the confidence interval that surrounds the ability estimate.
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In this study, an overview of the various multidimensional classification meth-

ods is given and their efficiency and accuracy are compared for between- and

within-dimensionality.

An MCAT also requires a method that selects the items. Several item selection

methods exist for MCAT for estimating ability (Reckase, 2009; Segall, 1996; Yao,

2012). Unidimensional item selection methods can often be used for between-

dimensionality. For MCAT with within-dimensionality, only a few methods are

available. These methods are discussed in the third section.

Multidimensional item response theory is discussed next. The newly developed

and the existing classification methods are discussed in the third section. After

these methods are discussed, item selection methods are described. The simulation

study is included in the fourth section. In the final section, remarks are made

about multidimensional classification testing and directions for future research.

5.2 Multidimensional Item Response Theory

An important part of a multidimensional computerized adaptive test is the item

bank that has been calibrated with a MIRT model (Reckase, 2009). In a calibrated

item bank, model fit is established, item parameter estimates are available, and

items with undesired characteristics are removed (Van Groen, Eggen, & Veldkamp,

2014a). During testing, the item parameters are assumed to be estimated with

enough precision to consider them known (Veldkamp & Van der Linden, 2002).

The MIRT model used here is the dichotomous two-parameter logistic model

(Reckase, 1985). A set of p abilities accounts for the examinee’s responses to the

items, and the probability of a correct answer, xi = 1, to item i is given by (Reckase,

2009)

Pi(θ) = P (xi = 1|ai, di, θ) =
exp(a′iθ+ di)

1 + exp(a′iθ+ di)
, (5.1)

where ai is the vector of discrimination parameters, di is the easiness of the item,

and θ is the vector of ability parameters.

In a computerized classification test, ability estimates are sometimes used by the

item selection or classification method. Ability is estimated using the likelihood

function. The likelihood of a vector of observed responses xj = (x1j, ..., xkj) to

items i = 1, · · · , k for an examinee j with ability θj equals the product of the

probabilities of the responses to the administered items (Segall, 1996):
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L
(
θj|xj

)
=

k

∏
i=1

Pi
(
θj
)xij Qi

(
θj
)1−xij , (5.2)

where Qi(θj) = 1 − Pi(θj). This likelihood can be used due to the local indepen-

dence assumption and uses the fixed item parameters from the item bank.

The vector of values, θ̂ = (θ̂1, · · · , θ̂p), that maximizes Equation 5.2 is used as

the ability estimate θj (Segall, 1996). Since the equations to find the maximum

likelihood (ML) estimates have no closed-form solution, an iterative search proce-

dure, such as Newton-Raphson, is used. Weighted maximum likelihood (WML)

estimation is an extension of maximum likelihood estimation that reduces the

bias in the ML estimates. WML for MIRT was developed by Tam (1992) based

on Warm’s (1989) unidimensional estimator. The WML procedure used here was

described in Van Groen et al. (2014b).

Two types of multidimensionality exist: within- and between-dimensionality. If

more than one discrimination parameter is non-zero for one or more items, within-

dimensionality is present (W.-C. Wang & Chen, 2004), and items are intended

to measure multiple or all abilities. Using a within-dimensional model, complex

domains can be modeled while taking into account several abilities simultaneously

and representing different combinations of abilities for different items (Hartig &

Höhler, 2008). If just one discrimination parameter is non-zero per item in the test,

the test is considered to have between-dimensionality (W.-C. Wang & Chen, 2004),

and items are intended to measure just one ability. Between-dimensional models

are typically used if a test consists of several unidimensional subscales.

5.3 Classification Methods

Four methods for making multidimensional classification decisions are described

here. The SPRT can be used for tests with between-dimensionality to make de-

cisions for each dimension (Seitz & Frey, 2013a). This method was expanded by

Van Groen and Eggen (2014) to make decisions on the entire test, on several di-

mensions simultaneously, and on subsets of items. Seitz and Frey (2013b) adapted

Kingsbury and Weiss’s (1979) classification method for between-dimensionality.

This method is extended here to make classification decisions on the entire test,

on several dimensions, and on subsets of items.

The SPRT can also be used for within-dimensionality (Van Groen et al., 2014b).

The method will be described for making multiple decisions and for making

decisions on subsets of items. In the last part of this section, it will be shown
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that it is also possible to adapt Kingsbury and Weiss’s (1979) confidence interval

method to make multidimensional decisions with within-dimensionality.

5.3.1 The SPRT for Between-Dimensionality

Seitz and Frey (2013a) developed a classification method for between-dimensionality

based on the unidimensional classification method (Eggen, 1999; Reckase, 1983;

Spray, 1993; Thompson, 2009) using the sequential probability ratio test (Wald,

1947/1973). The SPRT is used to make a classification decision per dimension.

The multidimensional SPRT requires that a cutoff point, θcl, is set for each

dimension l, l = 1, ..., p, with an indifference region around the cutoff point

c. The indifference region accounts for the measurement error in the decisions

for examinees with an ability close to the cutoff point (Eggen, 1999). The SPRT

compares two hypotheses (Van Groen et al., 2014b):

H0l : θjl < θcl − δ; (5.3)

Hal : θjl > θcl + δ, (5.4)

where δ specifies the distance between the cutoff point and the boundary of the

indifference region.

The likelihood ratio between the hypotheses for dimension l after k items are

administered is calculated for the SPRT (Van Groen et al., 2014b):

LR (θcl + δ; θcl − δ) =
L
(
θcl + δ; xjl

)
L
(
θcl − δ; xjl

) , l = 1, · · · , p, (5.5)

in which L
(
θcl + δ; xjl

)
and L

(
θcl − δ; xjl

)
are calculated using Equation 5.2 with

only the items included that load on the dimension.

Decision rules are applied to the likelihood ratio to decide whether to continue

testing or to make a classification decision:

administer another item if β/(1 − α) < LR(θcl + δ; θcl − δ) < (1 − β)/α;

ability below θcl if LR(θcl + δ; θcl − δ) ≤ β/(1 − α); (5.6)

ability above θcl if LR(θcl + δ; θcl − δ) ≥ (1 − β)/α,

where α and β specify the acceptable classification error rates (Spray et al., 1997).
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In practical settings, a maximum test length is specified at which the examinee

is classified as having an ability above the cutoff point if the likelihood ratio is

larger than the midpoint of the interval in Equation 5.6.

An examinee can be classified into one of multiple levels using the SPRT.

Following Van Groen and Eggen (2014), the Sobel and Wald (1949) approach was

used in which only adjacent levels are compared (Eggen & Straetmans, 2000).

In many testing situations, a pass/fail decision is required on the entire test in

addition to classifications on dimensions of the test. The likelihood then includes

all dimensions and items (Van Groen & Eggen, 2014):

LR (θc + δ; θc − δ) =
L
(
θc + δ; xj

)
L
(
θc − δ; xj

) , (5.7)

where θc includes the cutoff points for all dimensions and decisions and δ includes

the δ for all decisions. The decision rules for the entire tests then become

administer another item if β/(1 − α) < LR(θc + δ; θc − δ) < (1 − β)/α;

ability below θc if LR(θc + δ; θc − δ) ≤ β/(1 − α); (5.8)

ability above θc if LR(θc + δ; θc − δ) ≥ (1 − β)/α.

Van Groen and Eggen (2014) also investigated the use of the SPRT to make

decisions using only a subset of the dimensions or a subset of the items. The first

extension implies that Equation 5.7 includes only the selected dimensions and

items that load on those dimensions. The second extension is relevant if only some

of the items are selected that load on dimension l. The likelihood ratio of Equation

5.7 is then calculated for a subset of the items. Van Groen and Eggen’s (2014)

extensions make it possible to include an item in several decisions. This implies

that a knowledge profile can be created for each student, which can be used to

adapt the instruction to the student based on the student’s current knowledge.

5.3.2 The Confidence Interval Method for Between-Dimensionality

Seitz and Frey (2013b) also adapted Kingsbury and Weiss’s (1979) unidimensional

classification method to between-dimensionality tests. The method stops testing

as soon as the cutoff point is outside the confidence interval.

The likelihood function of a between-dimensional test reduces to one unidi-

mensional likelihood function per dimension. This result can be used to adapt
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the confidence interval method to between-dimensionality. The method uses the

following decision rules:

administer another item if θ̂jl − γ · se(θ̂jl) < θcl < θ̂jl + γ · se(θ̂jl);

ability below θcl if θ̂jl + γ · se(θ̂jl) < θcl; (5.9)

ability above θcl if θ̂jl − γ · se(θ̂jl) > θcl,

where θ̂jl denotes the examinee’s current ability estimate for dimension l, γ is a

constant related to the required accuracy (Eggen & Straetmans, 2000), and se(θ̂jl)

is the standard error of the estimate (Hambleton, Swaminathan, & Rogers, 1991):

se(θ̂jl) =
1√

I(θ̂jl)
, (5.10)

where I(θ̂jl) denotes the Fisher information available in the observable variables

for estimating θjl (Mulder & Van der Linden, 2009). Fisher information is given by

(Tam, 1992)

I(θ̂jl) =
k

∑
i=1

a2
ilPi(θ̂jl)Qi(θ̂jl). (5.11)

This method can be used only to make decisions per dimension, but not to

make decisions on all dimensions simultaneously. Three possible solutions for

this problem were found for reducing multiple abilities into one global ability

(Van der Linden, 1999; Veldkamp & Van der Linden, 2002; Yao, 2012). Veldkamp

and Van der Linden (2002) defined a composite ability as a linear combination

of θ so that all remaining ability parameters become nuisance parameters. Those

parameters remain a part of the likelihood function, which implies that application

of the Kingsbury and Weiss (1979) method is still not possible. Yao (2012) combined

the abilities using optimal weights. This approach appears to be attractive, but

cannot be used because the weights would then vary during testing. This implies

that it is not possible to specify a fixed cutoff point for the SPRT. Van der Linden’s

(1999) approach can be used as a starting point for application of the confidence

interval method to between-dimensionality classification testing.

Van der Linden (1999) assumed that the parameter of interest is a linear

combination of the abilities, λ′θ, where λ is a combination of non-negative weights.

The weights are chosen to reflect the relative importance of the dimensions but

these are considered to be of equal importance. However, the dimensions vary in
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number of items; thus, the weights are given by 1 divided by the number of items

for each dimension. The composite ability is given by (Van der Linden, 1999)

ζ =
p

∑
l=1

θlλl. (5.12)

The confidence interval method requires that the standard error of measurement

is known for the ability estimate. The standard error of measurement is, following

Yao (2012),

se(ζ) =
√

V(ζ), (5.13)

and

V(ζ) = λ′V(θ)λ, (5.14)

and V(θ) = I(θ)−1. The non-diagonal elements of matrix I are zero, and the

diagonal elements can be calculated using Equation 5.11.

Following Eggen and Straetmans (2000), the decision rules then become

administer another item if ζ̂ j − γ · se(ζ̂ j) < ζc < ζ̂ j + γ · se(ζ̂ j);

ability below ζc if ζ̂ j + γ · se(ζ̂ j) < ζc; (5.15)

ability above ζc if ζ̂ j − γ · se(ζ̂ j) > ζc,

where ζc denotes the cutoff point for the composite ability. The cutoff point can be

determined with Equation 5.12 using the cutoff points for the dimensions.

If a decision on several dimensions simultaneously is required, but not on all

dimensions, only those dimensions should be included in Equation 5.12. The

information matrix as used for Equation 5.14 should include only the items that

are relevant for those dimensions. If only some of the items that measure a specific

dimension is used to make a decision, only those items should be included in the

information matrix.

5.3.3 The SPRT for Within-Dimensionality

The SPRT can be used for tests with within-dimensionality, but requires an ad-

ditional step (Van Groen et al., 2014b). Reckase (2009) described a method for

reducing the multidimensional space to a unidimensional line (M. Wang, 1985,

1986). This line, the reference composite, is then used to make classification

decisions with the SPRT.



Chapter 5. Multidimensional Classification Testing: SPRT and CI method 109

The reference composite through the multidimensional space describes the

characteristics of the matrix of discrimination parameters for the items in the item

bank (Reckase, 2009). The direction of the line is described by the eigenvector of

the aa′ matrix that corresponds to the largest eigenvalue of this matrix (Reckase,

2009). The elements of the eigenvector determine the direction cosines, αξl, for the

angle between the reference composite and the dimension axes.

θ-points can be projected on the reference composite (Reckase, 2009). A higher

value on the reference composite, denoted as ξ j, denotes a more proficient student

than a lower value (Van Groen et al., 2014b). Proficiency can be calculated using

an additional line through the θj-point and the origin. The length of this line is

given by (Reckase, 2009)

Lj =

√√√√ p

∑
l=1

θ̂2
jl, (5.16)

and the direction cosines, αjl, for this line and dimension axis l, are calculated

using (Reckase, 2009)

cos αjl =
θ̂jl

Lj
, l = 1, · · · , p. (5.17)

The angle, αjξ = αjl − αξl, between the reference composite and the student’s

line is used to calculate the estimated proficiency, ξ̂ j, on the reference composite:

ξ̂ j = Lj cos αjξ . (5.18)

The reference composite can now be used to make classification decisions with

the SPRT (Van Groen et al., 2014b). The cutoff point for the SPRT, ξc, and δξ are

specified on the reference composite. The boundaries of the indifference region

are then transformed to their θ-points using

θξc+δ
= cos αξ × (ξc + δξ); (5.19)

θξc−δ
= cos αξ × (ξc − δξ), (5.20)

where αξ includes the angles between the reference composite and all dimension

axes. The likelihood ratio for the SPRT becomes (Van Groen et al., 2014b)

LR
(
θξc+δ

; θξc−δ

)
=

L
(
θξc+δ

; xj
)

L
(
θξc−δ

; xj
) , (5.21)
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which can be used to make multidimensional classification decisions with the

following decision rules

administer another item if β/(1 − α) < LR(θξc+δ
; θξc−δ

) < (1 − β)/α;

ability below ξc if LR(θξc+δ
; θξc−δ

) ≤ β/(1 − α); (5.22)

ability above ξc if LR(θξc+δ
; θξc−δ

) ≥ (1 − β)/α.

Decisions can be made using the reference composite for different subsets of

items, subsets of dimensions, and more than two categories.

5.3.4 The Confidence Interval Method for Within-Dimensionality

Until now, Kingsbury and Weiss’s (1979) confidence interval method has never

been applied to within-dimensional classification testing. However, the method

can be applied to within-dimensionality tests using the reference composite.

After an item is administered, the examinee’s ability is estimated, the estimate

is projected onto the reference composite, and the corresponding point on the

reference composite in the multidimensional space is calculated using

θξ̂ j
= cos αξ × ξ̂ j. (5.23)

The reference composite can be considered to be a combination of abilities that

are combined using weights, λξ . The weights are based on the angles between the

reference composite and the dimension axes, λξl = 1/αξl.

The standard error of measurement is required for the confidence interval

method and follows from (Yao, 2012):

se(ξ) =
√

V(ξ), (5.24)

with

V(ξ) = λ′
ξV(θξ)λξ . (5.25)

The variance in the point in the multidimensional space that corresponds to

the ability estimate is approximated by the inverse of the information matrix of

the same point. The decision rules then become
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administer another item if ξ̂ j − γ · se(ξ̂ j) < ξc < ξ̂ j + γ · se(ξ̂ j);

ability below ξc if ξ̂ j + γ · se(ξ̂ j) < ξc; (5.26)

ability above ξc if ξ̂ j − γ · se(ξ̂ j) > ξc,

where ξc denotes the cutoff point for the reference composite. The cutoff point

can be determined using the cutoff points specified for each dimension.

5.4 Item Selection Methods

Computerized classification testing requires a method to select the items during

test administration. Multiple methods are available for unidimensional classifica-

tion testing (Eggen, 1999; Spray & Reckase, 1994; Van Groen et al., 2014a). Several

methods are available for multidimensional computerized adaptive testing for

ability estimation (Reckase, 2009; Segall, 1996; Yao, 2012), but limited knowledge

is available for selecting items in multidimensional classification testing (Seitz &

Frey, 2013a; Van Groen et al., 2014b; Van Groen & Eggen, 2014).

In unidimensional classification testing, items are often selected based on

maximizing information at the ability estimate or the cutoff point (Eggen, 1999;

Spray, 1993; Thompson, 2009). The same approach is followed here for between-

and within-dimensionality. One specific method, the weighting method, will be

used to select based on the cutoff points. Selection methods for multidimensional

computerized adaptive testing often use Bayesian ability estimates, but weighted

maximum likelihood estimates were used here (Van Groen et al., 2014b).

5.4.1 Item Selection Methods for Between-Dimensionality

If all available items measure the same ability, unidimensional item selection

methods can be used (Van Groen & Eggen, 2014), but items must be selected

per dimension. In the first part of this section, the unidimensional item selection

method that maximizes information at the ability estimate is described. Then the

unidimensional weighting method is described.

Item Selection Based on the Ability Estimate

In unidimensional classification testing, Fisher information is often maximized

at the current ability estimate (Eggen, 1999; Spray, 1993). Since information is
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related to the standard error of measurement, maximizing information at the

current ability estimate tries to reduce the standard error of the estimates. In

between-dimensional testing, this boils down to (Van Groen & Eggen, 2014)

max Ii(θ̂l), for i ∈ Val, (5.27)

where Val is the set of items that is available for selection for dimension l.

Item Selection Using the Weighting Method

In unidimensional classification testing, information is often maximized at the cut-

off point (Eggen, 1999; Spray, 1993). Since item selection for between-dimensionality

can be done using unidimensional methods, items can be selected that provide

the most information at the cutoff point using

max Ii(θcl), for i ∈ Val. (5.28)

This method can be used only if just one cutoff point is specified per dimension.

Although several methods have been developed for item selection with multiple

cutoff points (Eggen & Straetmans, 2000; Wouda & Eggen, 2009), Van Groen et

al. (2014a) developed the weighting method. This method combines the objective

functions per cutoff point into one weighted objective function. Item selection

is adapted to the examinee’s ability by adapting the weight for the cutoff points

depending on the distance of the cutoff point to the current ability estimate

(Van Groen et al., 2014a). The quantity maximized for item selection for dimension

l becomes

max
C

∑
c=1

1
|θ̂jl − θcl|

Ii(θcl), for i ∈ Val. (5.29)

5.4.2 Item Selection Methods for Within-Dimensionality

Item selection for within-dimensionality has to take the multidimensional struc-

ture of the MIRT model into account. This implies that multidimensional item

selection methods have to be used, but these methods have been developed for

multidimensional computerized adaptive testing to obtain an efficient and precise

ability estimate. One of Segall’s (1996) methods selects the items at the current

ability estimate and was adapted to select at a weighted combination of the cutoff

points (Van Groen et al., 2014b).
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Item Selection Based on the Ability Estimate

Segall’s (1996) method selects the item that results in the largest decrement of the

volume of the confidence ellipsoid surrounding the ability estimate. The size of

the ellipsoid can be approximated by the inverse of the information matrix, so the

item is selected that has the highest (Segall, 1996)

max det

(
k

∑
i=1

I(θ̂j, xij) + I(θ̂j, xk+1,j)

)
, for k + 1 ∈ Vk+1, (5.30)

where ∑k
i=1 I(θ̂j, xij) denotes the information that has been gained thus far and

I(θ̂j, xk+1,j) the information that a potential item provides. The item is administered

that will result in the largest determinant of the information matrix, which implies

that the volume of the confidence ellipsoid is minimized (Reckase, 2009).

Item Selection Using the Weighting Method

The second item selection method for within-dimensional classification testing is

based on maximization at a weighted combination of the cutoff points (Van Groen

et al., 2014b). For adaptation of Segall’s (1996) method, the multidimensional

points corresponding to the cutoff points must be calculated. The weighting

method (Van Groen et al., 2014a) then selects the item that corresponds to

max
C

∑
c=1

1
|ξθ̂j

− ξc| Ii(θξc), for i ∈ Val. (5.31)

5.5 Simulation Studies

The efficiency and the accuracy of the classification and item selection methods

were investigated using simulation studies. Two series of simulations were con-

ducted, one series with between-dimensionality and one with within-dimensionality.

The goal of these simulations was to compare the accuracy and efficiency of the

SPRT and the confidence region methods for each type of multidimensionality. The

simulations were conducted with various settings for the classification methods

and with several item selection methods.
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5.5.1 Design of the Simulation Study with Between-Dimensionality

The End of Primary School Test (Cito, 2012) in the Netherlands provides a recom-

mendation about the most suitable level of secondary education for pupils. As a

test result, a scale score based on the pupil’s ability is given. This scale score can

be related to a advise for the level of secondary education (Van Boxtel, Engelen,

& De Wijs, 2011). The scale score and the primary school’s recommendation are

used by secondary schools to classify pupils into different classes based on the

educational levels.

The test consists of four components: Language, Mathematics, Study Skills, and

Environmental Studies. However, only the Language component was included

in the simulations. Language (100 items) consists of four components: Writing

(30 items), Text Comprehension (30 items), Vocabulary (20 items), and Spelling

(20 items). Spelling is divided even further into Spelling of Verbs (10 items) and

Spelling of Non-Verbs (10 items). Decisions were made in the current study

about the entire Language component, the four Language components, and both

Spelling components. The decisions for Language and Spelling were made without

consideration of the decisions on underlying components and whether decisions

had already been made for those components.

The test is always calibrated using four independent unidimensional scales for

Language. A between-dimensional model with the same number of dimensions

was used here. The responses of the 147,099 pupils in the dataset for the 2012

End of Primary School Test were used to obtain item parameters for the between-

dimensional model with NOHARM 4 (Fraser & McDonald, 2012).

The 2012 data were used to estimate the pupils’ ability distribution. The

correlations between the dimensions for the between-model were determined

using the ability estimates of the observed data. The observed correlations were

then used to generate respondents. Ten datasets were simulated, each consisting

of records for 1,000 simulees and all 100 Language items. The response patterns

of these datasets were used for all simulations. By replicating the simulations,

random fluctuations were mediated. The ability parameters used to generate the

data can be used to determine the "true classifications" for each student.

Settings for the Classification Methods

Cutoff points are available for the scale scores that are reported for the test

(Van Boxtel et al., 2011). Three levels were used in the simulations, which were
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related to the levels within the Dutch educational system. As in Van Groen et

al. (2014b), the median of the ability estimates for each of the three intervals was

calculated using the observed data. The midpoint between two adjacent medians

was set as the cutoff point. The same procedure was applied to calculate the

cutoff points for decisions based on parts of the scales. If a decision was based on

multiple dimensions, the cutoff points on the separate dimensions were used.

The settings for the SPRT potentially influence which decision is made. Analy-

ses were conducted with α = β = 0.05 and 0.10. The size of δ for the SPRT also

influences test length and accuracy. The constant for δ varied between 0.10, 0.20,

and 0.30 multiplied with the standard deviation of the observed abilities. The

reason for the multiplication with the standard deviation is that this relates the

size of delta to the observed ability distribution. For the decision on Language, the

average standard deviation over the four dimensions was used. If δ became larger

than half the distance between the cutoff points, δ was set at half the distance to

prevent overlap in indifference regions for adjacent cutoff points.

The settings of the confidence interval method also influence the number of

items that are required before a classification can be made and which classification

is made. The confidence intervals were set at 80%, 85%, 90%, and 95%. The

corresponding values of the t-distribution for the intervals were used for γ.

Item Selection in the Simulations

Three item selection methods were used in the simulations: random item selection,

maximization of information at the current ability estimate, and maximization of

information at a weighted combination of the cutoff points. It was expected that

the last two methods would be more efficient than random item selection.

The Text Comprehension and Writing components consist of testlets. A test-

let is a set of items that share a common stimulus, such as a text, which must

be administered in the correct order. As in Van Groen and Eggen (2014), the

information-based methods selected the testlet that maximized the average infor-

mation. The random item selection method selected a testlet at random.

Simulation Design

Two series of simulations were conducted with the between-dimensional datasets.

The first series of simulations included all items for Language (100 items). The idea

behind the simulations was that it would then be possible to compare the accuracy

of the SPRT and the confidence interval method. Accuracy is reported here as
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the proportion of consistent decisions (PCD) between the classifications by the

classification method and the classifications based on the abilities used to generate

the data. Unfortunately, no baseline classification is available if several dimensions

are involved in the decision. This implies that the decisions for Language must be

compared, if possible, with the decisions made by the classification methods with

100 items. Those decisions were generated with α = 0.05 and δ = 0.05.

The second series of between-dimensional simulations were conducted without

a fixed test length. Testing was stopped as soon as this was possible based on

the specifications of the SPRT or the confidence interval method. Two outcome

measures were reported per simulation: the average test length (ATL) and the

proportion of consistent decisions. The ATL and the PCD were compared between

the classification methods.

A remark must be made about the between-dimensional simulations with a

flexible test length. Content distribution over the Language and Spelling compo-

nents had to be controlled, because content validity was considered important. The

content distribution was controlled using the Kingsbury and Zara (1989) approach.

This approach selected the items from the component for which the difference

between the desired and achieved percentage was the largest.

5.5.2 Design of the Simulation Study with Within-Dimensionality

The within-dimensional simulations were conducted with the ACT item pool,

which was also used in Ackerman (1994), Van Groen et al. (2014b), and Veldkamp

and Van der Linden (2002). The item pool consists of 180 items that were previously

calibrated with a two-dimensional compensatory IRT model using NOHARM II

(Fraser & McDonald, 1988). An orthogonal solution was used for the calibration.

Items are intended to measure both dimensions, which implies that the test has

within-dimensionality. The items were previously classified into six content and

three skill categories (Veldkamp & Van der Linden, 2002). The content categories

include Coordinate Geometry (CG; 27 items), Elementary Algebra (EA; 30 items),

Intermediate Algebra (IA; 27 items), Pre-Algebra (PA; 42 items), Plane Geometry

(PG; 42 items), and Trigonometry (TG; 12 items), and the skill categories are

Analysis (AN; 17 items), Application (AP; 89 items), and Basic Skills (BS; 74 items).

More information about the item pool can be found in Van Groen et al. (2014b)

and Veldkamp and Van der Linden (2002).
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Decisions were made in the current study on the three skill categories. Decisions

on the entire Mathematics scale were made independent of the decisions for the

categories and whether a decision had already been made for the categories.

Ten datasets were generated, each consisting of 1,000 simulees from a multivari-

ate standard normal distribution. By replicating the simulations with 10 datasets,

random fluctuations were mediated. The resulting 10 datasets were used for all

simulations with the SPRT and the confidence interval method.

Settings for the Classification Methods

The cutoff points for the classification methods were specified on the reference

composite. They were positioned at -0.609 and 0.609. These points are based on

the 33th and 66th percentiles of the distributions for the underlying dimensions.

The α and β for the SPRT were set to 0.05 and 0.10. δ was set at the reference

composite and varied: 0.10, 0.20, and 0.30. Since no actual ability distribution was

known, δ was not tailored to the ability distribution. The same values as before

were used for γ for the confidence interval method.

Item Selection in the Simulations

Three item selection methods were used in the simulations: random item selection,

the within-dimensional version of the weighting method, and the method that

maximizes the determinant of the information matrix at the current ability estimate.

The last method will often be referred to as the method based on the ability

estimate in the remainder of the simulation studies.

Simulation Design

Two series of simulations were run for within-dimensionality. The first series

consisted of runs in which test length was fixed at the maximum number of

items that was available for the decision in the item pool. The simulation studies

are provided here to illustrate the discussed methods. This also implies that no

practical restrictions were specified for the test length. With a fixed test length

the accuracy of the classifications with the SPRT and the confidence interval

method can be compared. The PCD is defined here as the consistency of the

classifications based on the (composite of the) ability estimates and the decisions

by the classification methods. The second series of simulations did not place
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Table 5.1
Proportion of Consistent Decisions with Maximum and Flexible Test Length for the SPRT

α = β δ LAN WR SP SPNV SPV TC VO

Maximum Test Length

- 0.1 sd 0.995 0.947 0.940 0.987 0.909 0.938 0.956

- 0.2 sd 0.993 0.947 0.938 0.987 0.904 0.936 0.956

- 0.3 sd 0.989 0.942 0.936 0.987 0.895 0.935 0.954

Flexible Test Length

0.05 0.1 sd 0.995 0.947 0.940 0.987 0.909 0.938 0.956

0.05 0.2 sd 0.993 0.947 0.938 0.987 0.904 0.936 0.956

0.05 0.3 sd 0.987 0.942 0.936 0.987 0.895 0.935 0.954

0.10 0.1 sd 0.995 0.947 0.940 0.987 0.909 0.938 0.956

0.10 0.2 sd 0.992 0.947 0.938 0.987 0.904 0.936 0.956

0.10 0.3 sd 0.978 0.942 0.936 0.987 0.895 0.935 0.954

Note. The proportion of consistent decisions (PCD) for Language (LAN) was based on the
SPRT classification with 100 items and α = β = δ = 0.05. The PCDs using the classification
based on the true ability for Writing (WR), Spelling (SP), spelling Non-Verbs (SPNV),
Spelling Verbs (SPV), Text Comprehension (TC), and Vocabulary (VO). α = β = acceptable
error rates; δ = distance between cutoff point and boundary of indifference region.

restrictions on the test length. The efficiency and accuracy of the simulations with

the SPRT and the confidence interval method can now be investigated.

5.5.3 Results for the Example with Between-Dimensionality

The simulations for between-dimensionality consisted of two parts. In the first

part, the test length was fixed at 100 items. No constraints were set on test length

in the second part. Testing was stopped at the moment that enough confidence

was gathered to make a decision. The PCDs for the SPRT are given in Table 5.1.

For the fixed length simulations, the item selection methods had no effect on

accuracy because all items were administered. The size of α and β was omitted

from the table for the simulations with a fixed test length because the PCDs were

equal. The small inconsistencies in the decisions for Language with the SPRT

were caused by the different specifications for δ that were used for the original

classification decisions and the SPRT decisions. The PCDs for all other decisions

were based on the comparison between the SPRT decisions and the classifications

based on the abilities that were used to generate the data. These decisions were

less consistent than the decisions on Language, but were based on fewer items

and on a different classification criterion.
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Table 5.2
Proportion of Consistent Decisions with Maximum and Flexible Test Length for the Confidence
Interval Method

Method γ LAN WR SP SPNV SPV TC VO

Maximum Test Length

- - 1.000 0.996 1.000 1.000 1.000 0.996 0.995

Flexible Test Length

RA 1.9600 0.952 0.995 1.000 1.000 1.000 0.995 0.995

RA 1.6449 0.927 0.988 0.998 1.000 1.000 0.990 0.994

RA 1.4395 0.905 0.978 0.993 1.000 1.000 0.985 0.993

RA 1.2816 0.880 0.965 0.987 1.000 1.000 0.973 0.990

AE 1.9600 0.969 0.991 1.000 1.000 1.000 0.995 0.995

AE 1.6449 0.944 0.982 0.998 1.000 1.000 0.992 0.994

AE 1.4395 0.919 0.974 0.994 1.000 1.000 0.986 0.992

AE 1.2826 0.901 0.967 0.988 1.000 1.000 0.976 0.988

WM 1.9600 0.965 0.995 1.000 1.000 1.000 0.996 0.995

WM 1.6449 0.943 0.988 0.999 1.000 1.000 0.993 0.994

WM 1.4395 0.921 0.977 0.996 1.000 1.000 0.987 0.994

WM 1.2816 0.901 0.968 0.992 1.000 1.000 0.978 0.991

Note. The proportion of consistent decisions (PCD) for Language (LAN) was based on
the combined ability classification. The PCDs for Writing (WR), Spelling (SP), spelling
Non-Verbs (SPNV), Spelling Verbs (SPV), Text Comprehension (TC), and Vocabulary (VO)
were based on the true ability classification for random item selection (RA), maximization
at the ability estimate (AE), and the weighting method (WM). γ denotes the constant for
the confidence interval.

The proportions of consistent decisions for the simulations with a flexible test

length are also presented in the table. The results for the SPRT are based on the

simulations with all three item selection methods. The differences in PCD between

the item selection methods were negligible. Therefore, the results have not been

specified per method. If α or δ increased, the PCD decreased. All decisions

appeared to be consistent.

The PCDs for the simulations with the confidence interval method are given in

Table 5.2 for the simulations with a fixed and flexible test length.

For the fixed length simulations, the decisions used for the Language PCD

were calculated using the combined ability that is also used for the classification

method. All other PCDs were based on the classifications using the abilities that

were used to generate data. The close relationship between the abilities and the

confidence interval method became apparent in the high values for the PCD.
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The table also contains the PCDs for the simulations with a flexible test length.

The value of γ clearly influenced the consistency of the decisions. The PCDs were

very high, except for the Language decisions. The decisions apparently changed

when the test length was decreased. The PCDs were influenced by the item

selection methods. Random item selection resulted in less consistent decisions for

Language than the other two methods.

When comparing the decisions with a fixed and a flexible test length, reducing

the test length with the SPRT had a small influence on consistency. The influence

of the decreases by the confidence interval method on the PCDs was larger.

Testing was stopped in the second part of the simulations when enough con-

fidence was available in the decisions. The average test length of the SPRT

simulations is presented in Table 5.3. The test length of the SPRT simulations for

Language could be reduced with almost 36 items. The test length for the other

decisions could be reduced much less, but this could probably be explained by

the already optimized test length of the components of the test. If α and β were

increased, the test length was reduced. If the value of δ was increased, the tests

became much shorter. The simulations with the weighting method and the method

that maximized the determinant of the information matrix at the ability estimate

were more efficient than the simulations with random item selection.

Table 5.4 contains the average test length of the simulations with the confidence

interval method. The Language test length could almost be reduced to half the

original length when the confidence interval method was used. An increase in the

size of γ resulted in shorter tests. Tests with random item selection were often a

bit longer than tests with one of the other item selection methods.

When the simulations with the SPRT and the confidence interval method were

compared, it became apparent that the confidence interval method resulted on

average in shorter Language tests than the SPRT. The majority of the tests for the

components were also shorter for the confidence interval method.

The test length of the simulations with the SPRT could be reduced without

much influence on the consistency of the decisions. With the confidence interval,

the PCDs decreased more than with the SPRT if the test length was decreased.

5.5.4 Results for the Example with Within-Dimensionality

Simulations were also run with several item selection and classification methods

for the item pool with within-dimensionality. Test length was not decreased in the
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Table 5.3 Average Test Length for Simulations with Three Item Selection Methods for the SPRT

α = β δ LAN WR SP SPNV SPV TC VO

Random Item Selection

0.05 0.1 sd 95.968 29.988 20.000 10.000 10.000 29.996 20.000

0.05 0.2 sd 86.577 29.335 19.654 10.000 10.000 29.439 19.974

0.05 0.3 sd 77.922 28.260 18.928 9.965 9.943 28.309 19.662

0.10 0.1 sd 92.666 29.881 19.960 10.000 10.000 29.905 20.000

0.10 0.2 sd 80.879 28.603 19.160 9.979 9.973 28.687 19.792

0.10 0.3 sd 67.522 27.150 18.124 9.823 9.774 27.161 19.057

Maximization at the Ability Estimate

0.05 0.1 sd 95.069 29.986 20.000 10.000 10.000 29.995 20.000

0.05 0.2 sd 84.922 29.259 19.688 9.998 10.000 29.270 19.946

0.05 0.3 sd 75.422 28.091 18.751 9.940 9.892 28.033 19.422

0.10 0.1 sd 91.588 29.865 19.976 10.000 10.000 29.865 20.000

0.10 0.2 sd 78.926 28.482 19.068 9.961 9.950 28.428 19.619

0.10 0.3 sd 64.599 26.984 17.856 9.757 9.646 26.813 18.637

Weighting Method

0.05 0.1 sd 95.014 29.985 20.000 10.000 10.000 29.993 20.000

0.05 0.2 sd 85.048 29.258 19.502 9.998 10.000 29.265 19.929

0.05 0.3 sd 75.314 28.109 18.593 9.935 9.885 28.019 19.408

0.10 0.1 sd 91.527 29.860 19.938 10.000 10.000 29.874 20.000

0.10 0.2 sd 78.922 28.480 18.886 9.959 9.936 28.429 19.618

0.10 0.3 sd 64.035 26.978 17.770 9.758 9.660 26.775 18.626

Note. Average test length for Language (LAN), Writing (WR), Spelling (SP), spelling
Non-Verbs (SPNV), Spelling Verbs (SPV), Text Comprehension (TC), and Vocabulary (VO)
with random item selection (RA), maximization at the ability estimate (AE), and the
weighting method (WM). α = β = acceptable error rates; δ = distance between cutoff point
and boundary of indifference region.

first part of the simulation study, but testing was stopped in the second part of the

simulations if enough confidence was gathered for the decisions.

The proportions of consistent decisions for the simulations with the SPRT with

a fixed test length are presented in Table 5.5. Since all items were administered,

no effects of the use of a different item selection method were possible. The size

of α and β did not influence the PCDs for the SPRT. The size of δ had a negligible

influence on the PCDs.

The second part of the simulations with the SPRT had a flexible test length.

The PCDs for those simulations are also given in the table. The item selection
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Table 5.4 Average Test Length for Simulations with Three Item Selection Methods for the Confidence
Interval Method

γ LAN WR SP SPNV SPV TC VO

Random Item Selection

1.9600 64.598 27.534 19.428 10.000 10.000 28.461 19.590

1.6449 57.350 25.404 18.349 10.000 10.000 26.572 18.689

1.4395 53.772 23.730 17.381 9.903 9.970 24.925 17.756

1.2816 49.814 22.080 16.384 9.683 9.765 23.262 16.770

Maximization at the Ability Estimate

1.9600 64.088 26.850 19.196 10.000 10.000 27.638 19.386

1.6449 57.405 24.772 17.999 9.998 10.000 25.476 18.266

1.4395 52.506 23.024 17.012 9.871 9.924 23.740 17.269

1.2816 48.922 21.597 16.125 9.677 9.619 22.306 16.213

Weighting Method

1.9600 63.962 27.271 19.399 10.000 10.000 27.856 19.489

1.6449 56.608 25.156 18.272 10.000 10.000 25.783 18.483

1.4395 52.381 23.401 17.316 9.917 9.979 24.149 17.488

1.2816 48.584 21.892 16.440 9.717 9.728 22.626 16.530

Note. Average test length with for Language (LAN), Writing (WR), Spelling (SP), spelling
Non-Verbs (SPNV), Spelling Verbs (SPV), Text Comprehension (TC), and Vocabulary (VO)
with random item selection (RA), maximization at the ability estimate (AE), and the
weighting method (WM). γ denotes the constant for the confidence interval.

methods had a negligible influence on the consistency for the SPRT. The sizes of α,

β, and δ had little influence on the consistency for the simulations with the SPRT.

The settings for γ did not influence the PCDs for the second classification

method with a fixed test length (see Table 5.6). The Mathematics decisions were

the most consistent decisions and the PCDs for Analysis were the lowest. The

latter finding can probably be explained by the low number of available items (17).

The size of γ for the confidence interval method with a flexible test length did

influence the PCDs, except for Analysis. Depending on the decision, the weighting

method or the method based on the ability estimate resulted in the most consistent

decisions with the confidence interval method.

The decisions at maximum test length for Analysis were less consistent with

the confidence interval method than those with the SPRT. The differences between

the classification methods were smaller for the other decisions. The decisions with

the SPRT were more consistent than the decisions with the confidence interval

method if test length was not fixed.
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Table 5.5
Proportion of Consistent Decisions with Maximum and Flexible Test Length for the SPRT

α = β δ MATH AN AP BS

Maximum Test Length

- 0.1 sd 0.872 0.592 0.817 0.816

- 0.2 sd 0.871 0.592 0.817 0.815

- 0.3 sd 0.871 0.592 0.817 0.815

Flexible Test Length

0.05 0.1 sd 0.872 0.592 0.817 0.816

0.05 0.2 sd 0.871 0.592 0.817 0.815

0.05 0.3 sd 0.869 0.592 0.817 0.815

0.10 0.1 sd 0.872 0.592 0.817 0.816

0.10 0.2 sd 0.871 0.592 0.817 0.815

0.10 0.3 sd 0.862 0.592 0.816 0.814

Note. Proportion of consistent decisions (PCD) for the decisions with maximum and
reduced test length for Mathematics (MATH), Analysis (AN), Application (AP), and Basic
Skills (BS). γ denotes the constant for the confidence interval. α = β = acceptable error
rates; δ = distance between cutoff point and boundary of indifference region.

The ATL of the SPRT simulations is presented in Table 5.7. Except for Analysis,

on average, the tests were shorter for the SPRT than the specified maximum. If α,

β, or δ was increased, the ATL decreased for the SPRT. Tests with random item

selection for the SPRT were on average longer than for the other methods. On

average, the weighting method resulted in the shortest tests for the SPRT.

If γ was decreased in the simulations with the confidence interval method (see

Table 5.8), the ATL decreased. In contrast to the SPRT simulations, the Analysis

tests are sometimes shortened by the confidence interval method. Except for

Analysis, random item selection was always outperformed by the other selection

methods for the confidence interval method simulations.

The ATLs of the confidence interval method were often lower than those for

the SPRT, but their consistency was also lower.

5.6 Conclusions and Discussion

Two classification methods for two types of multidimensionality were investigated

in this study. Wald’s sequential probability ratio test (SPRT) was applied by Seitz

and Frey (2013a) to between-dimensional tests. The method was adapted to make

classifications on the entire test and on parts of the test by Van Groen and Eggen
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Table 5.6
Proportion of Consistent Decisions with Maximum and Flexible Test Length for the Confidence
Interval Method

Method γ MATH AN AP BS

Maximum Test Length

- - 0.873 0.566 0.816 0.816

Flexible Test Length

RA 1.9600 0.749 0.563 0.711 0.716

RA 1.6449 0.725 0.561 0.683 0.690

RA 1.4395 0.703 0.557 0.663 0.668

RA 1.2816 0.677 0.560 0.634 0.653

AE 1.9600 0.776 0.565 0.726 0.733

AE 1.6449 0.740 0.563 0.699 0.713

AE 1.4395 0.708 0.564 0.677 0.690

AE 1.2826 0.688 0.565 0.644 0.671

WM 1.9600 0.762 0.566 0.725 0.738

WM 1.6449 0.729 0.566 0.693 0.717

WM 1.4395 0.705 0.565 0.676 0.701

WM 1.2816 0.687 0.566 0.656 0.691

Note. Proportion of consistent decisions (PCD) for the decisions with with maximum and
reduced test length for Mathematics (MATH), Analysis (AN), Application (AP), and Basic
Skills (BS). γ denotes the constant for the confidence interval.

(2014). The SPRT has been applied to within-dimensional tests by Van Groen et al.

(2014b). The confidence interval method was originally developed by Kingsbury

and Weiss (1979) for unidimensional item response theory, but has been applied

by Seitz and Frey (2013b) to between-dimensional testing. However, their method

could only make decisions for each dimension independently. Thus, the method

was adapted to make decisions on all items in within-dimensional tests.

For unidimensional classification testing, it is well-known that both methods

and the settings that were used for them influence test length and accuracy. It

has also been established that these methods have a similar influence in the case

of multidimensional computerized classification testing (Van Groen et al., 2014b;

Van Groen & Eggen, 2014), but those studies did not include all four classification

methods and all the discussed item selection methods.

Simulation studies were used to investigate the efficiency and effectiveness

of the classification methods. Comparisons were made between different item

selection methods, between different classification methods, and between different
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Table 5.7 Average Test Length for Simulations with Three Item Selection Methods for the SPRT

α = β δ MATH AN AP BS

Random Item Selection

0.05 0.1 sd 173.413 17.000 88.983 73.973

0.05 0.2 sd 145.088 17.000 86.106 71.130

0.05 0.3 sd 114.373 17.000 80.292 65.812

0.10 0.1 sd 165.995 17.000 88.641 73.543

0.10 0.2 sd 123.560 17.000 82.185 67.802

0.10 0.3 sd 89.777 16.997 71.954 57.957

Maximization at the Ability Estimate

0.05 0.1 sd 170.393 17.000 88.980 73.967

0.05 0.2 sd 130.136 17.000 84.936 70.095

0.05 0.3 sd 93.670 17.000 77.598 63.055

0.10 0.1 sd 160.515 17.000 88.475 73.367

0.10 0.2 sd 104.208 17.000 80.040 65.825

0.10 0.3 sd 68.043 16.996 65.983 52.745

Weighting Method

0.05 0.1 sd 169.733 17.000 88.966 73.953

0.05 0.2 sd 128.886 17.000 84.622 69.732

0.05 0.3 sd 92.221 17.000 76.973 62.618

0.10 0.1 sd 159.506 17.000 88.361 73.241

0.10 0.2 sd 102.716 17.000 79.520 65.275

0.10 0.3 sd 66.335 16.997 65.061 52.313

Note. Average Test Length for Mathematics (MATH), Analysis (AN), Application (AP),
and Basic Skills (BS). α = β = acceptable error rates; δ = distance between cutoff point and
boundary of indifference region.

settings for the classification methods. Based on the simulations, one could

conclude that the SPRT is a more accurate method than the confidence interval

method to make a decision on Language; however, the latter is more efficient for

between- and within-dimensionality. The current findings are based on just one

dataset per type of dimensionality and on specific settings for the classification

methods. If a different dataset had been used, the results could have been different.

In addition, a clear interaction exists between the settings for the classification

methods, and the consistency and efficiency of the decisions. If different settings

had been specified, the outcomes could have been different.

In the current study, only maximum test length and flexible test length were

included in the simulations. In order to compare the decisions made by the SPRT
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Table 5.8 Average Test Length for Simulations with Three Item Selection Methods for the Confidence
Interval Method

γ MATH AN AP BS

Random Item Selection

1.9600 115.261 16.870 56.734 56.444

1.6449 96.659 16.794 50.464 52.014

1.4395 83.179 16.672 44.590 47.968

1.2816 70.185 16.465 39.110 44.155

Maximization at the Ability Estimate

1.9600 108.244 16.948 51.715 53.321

1.6449 80.874 16.903 42.003 49.512

1.4395 62.853 16.864 33.995 45.561

1.2816 50.057 16.666 27.086 39.606

Weighting Method

1.9600 106.564 16.899 50.941 53.640

1.6449 81.560 16.875 40.724 49.908

1.4395 63.011 16.828 32.000 45.821

1.2816 49.392 16.750 25.834 41.309

Note. Average Test Length for Mathematics (MATH), Analysis (AN), Application (AP),
and Basic Skills (BS).

and confidence interval method, one should fix the test length at a value lower

than the number of items available for the decisions in the item pool. This way, one

could compare the classification consistency between both methods for different

item selection methods and different settings for the classification method.

The efficiency of the SPRT and the confidence interval method can be investi-

gated by matching the PCDs of simulations with the methods. This implies that

a large range of settings for the classification methods must be used in order to

find which settings result in precisely the same consistency. Then the average test

length of the simulations can be compared. This requires that the classifications

used for determining the PCDs are identical. If a decision is based on more than

one dimension for between-dimensionality, this implies that a classification based

on an external criterion has to be used. If no matching values for the PCDs can be

established, this implies that the comparison cannot be made.

Another possibility for comparing the SPRT and the confidence interval method

would be to investigate whether it is possible to make a comparison based on a

mathematical proof. However, as far as the authors are aware, no proof has yet

been presented that matches the SPRT to the confidence interval method.
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In the current study, a dataset was used for the between-dimensionality simula-

tions and another dataset for the within-dimensionality simulations. This implies

that it is not possible to compare the decisions between the models. It would

be interesting to investigate whether different decisions are made if a different

dimensionality type has been specified for a dataset. Such a comparison was made

by Hartig and Höhler (2008), who compared ability estimates based on between-

and within-dimensional models. Such an analyses would imply, however, that de-

cisions are compared that were based on different ideas about the structure of the

data. Typically, the structure of the test determines which type of dimensionality

is used for modeling. However, for research purposes it could be interesting to

compare the classification decisions that resulted from the two models.

When the underlying results of the simulations were examined closely, it

became apparent that (weighted) maximum likelihood estimation for estimating

ability for tests with within-dimensionality can be troublesome. The estimated

abilities sometimes diverged from their true values, but compensation between the

abilities also occurred. These preliminary findings suggest that more knowledge

about ability estimation in the within-dimensional case would be welcome.

The item selection method for CATs with within-dimensionality also needs

attention. The method that maximizes the determinant of the information matrix

at some point in the ability scale was originally developed for MCAT for estimating

ability. This implies that the method is not developed for CCTs using a reference

composite. To give an example, the method that maximizes the determinant at

the cutoff point does not necessarily select an item whose difficulty is close to the

point in the multidimensional space that corresponds to the cutoff point. This

item has a value on the reference composite that is close to the cutoff point on the

reference composite, but the actual point of most information for the item can be

far away from the cutoff point in the multidimensional space.

It would also be interesting to investigate other item selection methods from

unidimensional classification testing or multidimensional computerized adaptive

testing for estimating ability for application to multidimensional classification test-

ing. Other methods could result in slightly more consistent or efficient decisions.

Nevertheless, it is expected that the differences between the methods will be small.

Finally, it would be interesting to investigate whether it is possible to use other

classification methods for multidimensional classification testing. Currently, only

the SPRT and the confidence interval method have been applied. The effectiveness

and efficiency of other methods could be an interesting topic for further study.
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Chapter 6

Assessment Approaches and Types of Digital

Assessments

Abstract

It is only through assessment that one can determine whether instruction has

resulted in the intended learning outcomes (Wiliam, 2011). Assessment serves

different goals, and a single test can have multiple goals. Tests have to be designed

so that outcomes are sufficiently accurate and so that they are suitable for the

testing goals, have the correct grain size, and have a test length suitable for the

testing purpose and testing population.

Four types of assessment approaches are explored: formative assessment, for-

mative evaluation, summative assessment, and summative evaluation. Depending

on the type of assessment, different types of tests can be used. Seven types of

digital assessments are explored: linear testing, automatically generated tests, com-

puterized adaptive testing, computerized classification testing, adaptive learning

environments, educational simulations, and educational games. The types of tests

vary in the design of their modules (student, tutor, knowledge, and user interface)

and in the way testing is adapted.

This chapter has been submitted as Van Groen, M.M., & Eggen, T.J.H.M. (2014). Assessment
Approaches and Computer-Based Testing. Manuscript submitted for publication.
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6.1 Introduction

It is only through assessment that one can determine whether instruction has

resulted in the intended learning outcomes (Wiliam, 2011). The relations between

learning, teaching, and assessment are increasingly being recognized (Van der Kleij,

Vermeulen, Schildkamp, & Eggen, 2013). Interdependencies also exist between

different approaches, types, and assessment design. The current article explores

the interdependencies between approaches, types of digital assessments, and

design, with some attention paid to the relations between assessment, teaching,

and learning.

First, four approaches are explored: formative assessment, formative evalu-

ation, summative assessment, and summative evaluation. Second, seven types

of digital assessment are investigated: linear tests, automatically generated tests,

computerized adaptive tests, computerized classification tests, adaptive learning

environments, educational simulations, and educational games. Third, four design

modules are described for different test types: student, tutor, knowledge, and user

interface. While discussing design, attention is paid to how testing is adapted to

the individual examinee. After describing the elements of the interdependencies,

the interdependencies between test approaches and test types are explored.

6.2 Test Approaches

A wide range of assessment approaches and definitions of these approaches exist.

Four approaches are described: formative assessment, formative evaluation, sum-

mative assessment, and summative evaluation. A complication when approaches

are distinguished is that a specific test can serve several purposes (Stobart, 2008).

The primary goal before and during test development determines which approach

is the most eminent for an assessment.

The stakes of testing differ in the approaches. A high stakes assessment has

substantial consequences for some or all parties involved (Stobart, 2008). A

low stakes test has limited consequences for some or all parties involved. An

assessment can be high stakes for one party, but low stakes for another party. The

stakes of the test have a major influence on test design.
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6.2.1 Formative Assessment

The first approach is formative assessment. The focus is here on supporting and

improving the learning process to facilitate learning, by making decisions at the

levels of the learner and the class (Van der Kleij et al., 2013). Well-designed and

implemented formative assessment suggests how instruction should be modified

and tells the teacher what pupils know and can do (Bennett, 2011). The use

of assessment for instructional guidance offers a powerful way for improving

schooling (Wiliam, 2013). Assessment outcomes have to be precise enough at

the individual level, so that instruction can be adapted. Feedback is considered

important for enhancing learning from formative assessments (Van der Kleij et

al., 2013). Van der Kleij et al. (2013) described three types of formative assess-

ment: data-based decision making (DBDM), assessment for learning (AfL), and

diagnostic testing (DT).

Data-based Decision Making

The first type is DBDM. Schildkamp and Kuiper (2010) define it as "systematically

analyzing existing data sources within the school; applying outcomes of analyses

to innovate teaching, curricula, and school performance; and implementing (e.g.,

genuine improvement actions) and evaluating these innovations" (p. 482). Using

the data, teachers can then set learning goals given the current student knowledge

level (Van der Kleij et al., 2013).

Assessment for Learning

The second type is AfL, which focuses on the quality of the learning process

(Van der Kleij et al., 2013). AfL attempts to make testing a part of the learning

process (Stobart, 2008) and focuses "on what is being learned and on the quality

of classroom interactions and relationships" (p. 145).

Diagnostic Testing

The third type is DT, which assumes that how a task is solved indicates the

learner’s developmental stage (Van der Kleij et al., 2013). Testing concerns individ-

ual educational needs; DT is not meant for comparing learners, but for promoting

learning and development (Van der Kleij et al., 2013).
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6.2.2 Formative Evaluation

The second approach is formative evaluation. Harlen (2007) and Shepard (2005)

distinguish formative assessment and formative evaluation. Assessment focuses on

making judgments about pupils and their class, while evaluation judges programs

or schools (Harlen, 2007; Stobart, 2008).

The use of assessment data makes formative evaluation a form of testing

(Haertel, 2013). Individual results are aggregated to get group or school informa-

tion (Sanders, 2013). Test outcomes have to be sufficiently precise at this level. The

focus is on improvement and the day-to-day running of educational systems and

organizations (Scheerens, Glas, & Thomas, 2003).

6.2.3 Summative Assessment

In summative assessment, tests make inferences about individual students (Haertel,

2013) and focus is on what has been learned by the end of the process. The

test results play a role in making a decision about the mastery of a content

domain by the pupil or class (Van der Kleij et al., 2013), guiding decisions about

student ability grouping, determining entry into and exit from education, making

college admission decisions (Haertel, 2013), and deciding whether a student

graduates. Focus is on differences among students at a given time point (Haertel,

2013). Sanders (2013) defined summative assessment as making judgments about

students and specified several goals: selection, classification, certification, or

placement.

6.2.4 Summative Evaluation

The fourth approach, summative evaluation, focuses on the use of assessment data

for making judgments about schools (Van der Kleij et al., 2013) or educational

systems. As a result, educational systems can focus their energy and effort towards

improvement in measured schooling outcomes (Haertel, 2013). Measurement has

to be precise at the group level and the test design can be adapted accordingly.

Accountability of schools is one form of summative evaluation in which schools

provide information on their performance and functioning to outside parties so

that schools are open to public review (Scheerens et al., 2003).

The other form of summative evaluation supersedes the school level. Judgments

can be made at the regional or (inter)national level and are typically based on

large scale assessments. The goal is to inform relevant parties about the state
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of the educational system (Sanders, 2013). Tests are used that are low-stakes at

the individual level for monitoring national standards by testing a representative

sample of students (Stobart, 2008). The assessments intend to show what students

can do at one time, but changes across years are also monitored (Harlen, 2007).

Adjustments in policy and standards are made based on the findings.

6.3 Types of Tests

Besides different test approaches, several types of digital assessments exist. The

possibilities while testing and with the assessment outcome depend on the type of

test. Seven types are discussed here: linear tests, automatically generated tests,

computerized adaptive tests, computerized classification tests, adaptive learning

environments, educational simulations, and educational games. The discussion is

limited to the types of tests that can be scored automatically by a computer.

6.3.1 Linear Tests

The first type is linear testing (LT) in which the content, item order, and test length

are the same for everyone. Items are selected before test administration, with

or without pretesting, although without is generally not advisable. Testing is

inefficient because testing is not tailored to the individual student (Mellenberg,

2011). As a test result, a number correct score, percentile score in a distribution,

classification, or ability estimate is reported.

6.3.2 Automatically Generated Tests

The second type is automatically generated testing (AGT) in which fixed length

tests are produced that satisfy a number of constraints or conditions (Parshall,

Spray, Kalohn, & Davey, 2002). Constraints include content restrictions and

psychometric properties (Parshall et al., 2002). Test forms are assembled before ad-

ministration using heuristics or linear programming (Parshall et al., 2002; Van der

Linden, 2005). The same results can be reported as for linear testing.

6.3.3 Computerized Adaptive Tests

The third type is computerized adaptive testing (CAT) in which items are selected

that best fit the examinee (Mellenberg, 2011). This results in a more precise ability

estimate. After each response, the examinee’s ability is estimated and the next

item is selected that has optimal properties at the new estimate (Van der Linden
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& Glas, 2010). Testing can be stopped when the desired accuracy level has been

obtained or after a fixed number of items. CAT requires an item bank that is

calibrated with item response theory (IRT). The item bank is assembled after a

pretest and contains items that have desired characteristics, such as appropriate

difficulty. After testing, an ability estimate, percentile, or classification based on

the estimate can be reported.

Mixture forms of CAT and LT are multistage testing (MST) and multi segment

computerized adaptive testing (MSCAT; Eggen, 2013). In MST, item sets are used

as building blocks for the test (Zenisky, Hambleton, & Luecht, 2010). These blocks

are assembled beforehand but are selected during testing based on the examinee’s

ability. In MSCAT, the CAT consists of several segments and branching rules

between the segments (Eggen, 2013). The segments form their own CAT. Since

MST and MSCAT are a form of CAT, they are not discussed further.

6.3.4 Computerized Classification Tests

The fourth type is computerized classification testing (CCT). CCT is a form of CAT,

but the purpose and intended use of the tests differs. CCT classifies examinees

in one of multiple levels instead of estimating ability (Eggen & Straetmans, 2000).

The difference in testing goal implies that some parts of the assessment procedure

differ. Testing is stopped when sufficient confidence is available to make a decision.

As a test result, the examinee’s classification decision is reported.

6.3.5 Adaptive Learning Environments

The fifth type is item-based adaptive learning environments (ALE). These systems

provide instruction that is optimized to each learner’s individual needs, prefer-

ences, and/or the context (Wauters, 2012). The interaction between the learner and

the learning tasks is optimized by adapting the sequencing of learning content

and feedback, which leads to more efficient and effective learning (Wauters, 2012).

Brusilovsky (1999) distinguished two types of environments: adaptive hyper-

media systems and intelligent tutoring systems. The first type contains knowledge

in the form of hypertexts (Wauters, 2012). The presentation of the information and

the overall link structure is adapted based on registered user actions. The second

type of ALE supports the learner in the problem solving process and provides

help on every part of problem solving based on discovered knowledge gaps. The

discussion is limited here to intelligent tutoring systems in which the learning

environment selects the items for the learner.
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6.3.6 Educational Simulations

The sixth type is educational simulations (ES). In ES, dynamic or interactive

features are present, such as viewing an animation, that act in ways that prompt a

change or response from a system (Levy, 2013). They often contain complex tasks

that require multiple steps, capture multiple features of task performance, produce

products in a relatively unconstrained manner, and relate task features with aspects

of performance (Levy, 2013). Educational simulations allow for observation of

student behavior in environments that approximate relevant real-world situations

where it would be impractical, cost prohibitive, or unethical to place students in

the actual situation for assessment purposes (Levy, 2013). Education simulations

can report multiple aspects of proficiency in which proficiency can include a wide

range of abilities and skills.

6.3.7 Educational Games

The last type is educational games (EG). Although EG are used often for instruc-

tional purposes, the focus is here on assessment environments. Novak, Johnson,

Tenenbaum, and Shute (2014) summarized some potential benefits of game-based

learning: it facilitates hands-on student-centered learning and it encourages in-

tegration of knowledge from different areas to make decisions and to examine

outcomes. Games facilitate learning because playing not only affects the learn-

ing outcomes, but they keep the learner engaged and motivated (Novak et al.,

2014). Evidence-centered design can be used to make valid inferences from games

(Mislevy, Steinberg, & Almond, 2003; Shute & Ke, 2012). The systems can re-

port real-time estimates of competencies across a range of knowledge and skills

(Mislevy et al., 2003; Shute & Ventura, 2014). Educational games can provide useful

information to students, teachers and the system itself (Mislevy et al., 2014). This

requires "reasoning from the specific things that students do, to what they know

and do more broadly, and what the system, the teacher, the students themselves

might do next" (p. 9) to develop skills and knowledge.

6.4 Test Design and Adaptivity

Depending on the test type, test design will be different. The architecture of

an ALE consists of four modules: student, tutor, knowledge, and user interface

(Nwana, 1990; Wauters, 2012). Other modules of other scholars, for example group

and adaptation modules (Paramythis & Loidl-Reisinger, 2004), can be redefined
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into the four modules. These modules for ALE are considered applicable to other

types of assessments, but the design varies between the test types. Test design has

major consequences on the precision of the test outcomes and possible test use.

This also implies that the stakes of testing have an influence on test design. As Gee

(2008) states it, a game’s design is inherently connected to designing good learning

for students. According to Mislevy et al. (2014) "a better design process jointly

addresses the concerns of game design, instructional design, and assessment as

required, so that key considerations of each perspective are taken into account

from the beginning" (p.13).

One way in which tests differ is in how they are adapted for individual students.

Adaptive systems attempt to be tailored for different students by taking into

account information accumulated in the student model (Brusilovsky & Peylo,

2003). The adaptation model defines what can be adapted and when and how it

is to be adapted (Paramythis & Loidl-Reisinger, 2004). Items are selected so that

testing is tailored to the individual students or so that learning is optimized.

Adaptivity was defined by Wauters, Desmet, and Van den Noortgate (2010)

as "the adjustment of one or more characteristics of the learning environment

in function of the learner’s needs and preferences and/or the context". Wauters

(2012) describes four dimensions of adaptivity in ALE: medium, form, source, and

level of adaptivity. The majority of these dimensions are considered applicable

to other types of testing as well. The features of the environment involved in the

adaptivity, the form dimension, are classified into three categories by Wauters

(2012): course/item features, person features, and context features. These features

are described in the next sections on the design modules. The level and context of

adaptivity cannot be attributed to specific modules so they will be discussed in

the final parts of this section.

LT and AGT are by definition not adaptive, but some degree of adaptation is

possible if different examinees receive different (assembled) test forms based on

previous performance. The possibilities of adaptation for CAT, CCT, ALE, ES, and

EG are discussed for each module. In some types of tests, the learner selects his

own learning path or items, but discussion here is limited to adaptation by the

computer except for EG.

6.4.1 Student Module

The student module contains all information about the student, such as the

student’s current knowledge level, student characteristics, and learning style
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(Wauters, 2012). The module often forms a representation of the student’s current

knowledge with respect to the mastery of the knowledge in the domain module

(Nwana, 1990) and maintains a live account of the user’s actions within the system

(Paramythis & Loidl-Reisinger, 2004). This information can be used by teachers

to monitor the student’s knowledge and progress or for item selection (Wauters,

2012). The item selection method requires the ability estimate, which items were

already administered, the content of the administered items, and so on. The

student’s knowledge level can be estimated using IRT. Other characteristics can be

estimated based on the way the student navigates through the system or can be

specified.

The student modules of LT and AGT can be very simple. The module contains

information about the administered tests and their results. This information makes

it possible to select a new test and to monitor student performance over time.

The student module in CAT contains at a minimum, the ability estimate along

with the information that is required for LT. The module uses this estimate for item

selection and monitors which items have been answered. Student background

information can also be included and used for adapting the item selection.

The student module of CCT resembles the module for CAT. If items are selected

that measure optimal at the cutoff point, no ability estimate needs to be included.

The student module is a central component in ALE and contains the learner’s

knowledge level, characteristics, learning style, and so on (Wauters, 2012). The

tutor module uses this information to tailor the selection of learning material to

the student.

The student module in ES articulates in the student model what is being

measured about the student (Levy, 2013). The student model tends to be multidi-

mensional because inferences have to be made about multiple, distinct aspects of

proficiency (Levy, 2013).

The student module in EG contains information about the student’s achieve-

ments during the game. Such achievements include the completion of levels

and the number of points that have been scored. Information required for the

assessment is also stored here.

6.4.2 Tutor Module

The tutor regulates the instructional interactions with the student (Nwana, 1990),

selects the learning material, answers the learner’s questions about goals and

content, and decides when a learner needs help (Wauters, 2012). The module’s
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importance strongly depends on the type of test. In some assessments, no tutor

module is required because staff fulfills the role of the module and items were

selected beforehand. In other testing systems, the module selects the items, which

ensures that measurement is efficient. The necessity of providing information

about the learning or testing goals depends on the test because this information

often has to be available before testing begins.

In LT and AGT, the tutor module can be very simple or even absent. The tutor

module can provide the learning goals and information about the test.

The tutor module is the central module of CAT. The module tailors the test to the

examinee by selecting those items that are optimal for obtaining the ability estimate.

In one item selection method, the optimal item maximizes the information in the

test for ability estimation by maximising information at the ability estimate (Chang

& Ying, 1996). Selecting the item that matches the ability estimate results in tests

that are not too easy or too difficult (Reckase, 2009). If necessary, easier items can

be selected (Eggen & Verschoor, 2006). Many item selection methods are available,

see, for example, Van der Linden and Glas (2010). At the beginning of the test, a

starting procedure is required because no ability estimate is available for selecting

the items (Eggen & Straetmans, 2000). This procedure can be based on student

characteristics or previous ability estimates.

The tutor module in CCT can be identical to the module in CAT, but tends to

be less efficient. Popular selection method in CCT selects the item that maximizes

information at the cutoff point(s) (Eggen, 1999; Eggen & Straetmans, 2000; Spray

& Reckase, 1994). The information about the examinee from the student module

is not used by these methods. These methods result in tests that are not tailored

to the examinee’s ability, so alternative methods were proposed that use both the

ability estimate and the cutoff points (Van Groen, Eggen, & Veldkamp, 2014).

The tutor module is an important part of ALE. The module tailors instruction

based on the learner’s educational needs and motivation (Wauters, 2012). The item

selection method can use a mixture of the ability estimate and student background

characteristics to select the items (Wauters, 2012).

In ES, the tutor module selects the next task that enhances learning the most.

The module uses the information in the student module for selection. The module

can use, for example, multidimensional ability estimates to select the next task.

In EG, the games are designed to set up certain goals, but they often leave

students free to achieve these goals in their own ways (Gee, 2008). Players can

design their own goals, but are limited by the rule space designed into the game
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(Gee, 2008) and the level structure in the game. This implies that students can

select their own learning and assessment path. The module provides the next

situation for the student based on the learning goals. Feedback can be given at

each moment and is often summarized at the end of the level (Gee, 2008).

6.4.3 Knowledge Module

The knowledge module represents the knowledge that the learner is trying to

acquire and the relationships between the knowledge elements (Paramythis &

Loidl-Reisinger, 2004; Wauters, 2012). The steps for solving the problem are also

stored here (Nwana, 1990). For each item, all elements, such as pictures, question

text, and so on, are stored. Items and course features, such as difficulty and

topic (Holt, Dubs, Jones, & Greer, 1994; Wauters, 2012), are also stored. Item

difficulty can be estimated using IRT or items can be classified into difficulty

levels by experts. Features related to the topic are based on content classifications

by experts. Items and learning tasks are selected by the tutor module from the

knowledge module. In practice, tests tend to have an elaborate set of content

specifications. A domain specification is available for each item, which can be used

by the item selection method to control test content. If certain item combinations

are required or not allowed, these relations are also specified here.

Wauters (2012) defined three forms of adaptivity: adaptive form representation,

adaptive content representation, and adaptive curriculum sequencing. The infor-

mation for these forms of adaptivity is stored here. Adaptive form representation

determines whether pictures and video are visible and whether and how links

are presented (Wauters, 2012). Adaptive content representation adapts the help a

learner receives in the problem solving steps based on the learner’s knowledge

(Brusilovsky, 1999; Wauters, 2012). The feedback a learner receives when or

after answering is a second form of adaptive content representation. Adaptive

curriculum sequencing selects the optimal question to learn certain knowledge

in an efficient and effective way (Wauters, 2012). The system helps the student to

find an optimal path through the learning material (Brusilovsky, 1999).

In LT, the knowledge module contains the items. The test developers spec-

ify item order beforehand so that content distribution within the assessment is

guaranteed.

The knowledge module for AGT contains the item pool and item characteristics.

Tests are assembled by the tutor module that meet the specified content constraints.

If psychometric constraints were set, this information is stored here.
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In CAT, the knowledge module contains the calibrated item pool. The items

and item parameters are stored in the item pool. Some items share a stimulus,

such as a common text, and have to be administered in the corresponding order.

This information is also stored here. In some tests, elaborate content specifications

are required, with items having additional attributes that are related to the specifi-

cations. These attributes are used for content control in item selection. In CAT,

item content can be adapted during testing. Adaptive form representation is only

allowed in CAT if the representation differences are included in the calibration

model because adding a figure could make an item easier. In CAT, it is assumed

that the examinee’s true ability remains constant during testing. If help or feedback

is offered during testing, the examinee’s ability is influenced, which is a violation

of IRT assumptions. Feedback can always be given after testing. Caution should

be taken while modeling items that were administered in a test with adaptive

curriculum sequencing because IRT assumptions are possibly violated.

The knowledge module of CCT is very similar to the module of CAT. In CCT,

it is also possible to adapt the curriculum sequencing after making a preliminary

decision. A final decision is then made after enough confidence has been gained

for the second decision.

The knowledge module of ALE contains the knowledge a learner is trying to

acquire (Wauters, 2012). The content organization and the way content is offered is

based on knowledge about the topic (Nwana, 1990). Information about the items

has to be stored, such as difficulty and topic related features. ALE try to enhance

learning during testing. Adaptive form representation ensures that each learner

learns in a way matching to his learning preferences. By adapting the curriculum

sequence in ALE, learning can be enhanced. An item can be selected that follows

the previous items content-wise. Content adaptation is possible in ALE. Items

can be selected so that a logical content flow is realized based on the learner’s

knowledge. By providing help and feedback, learning is also enhanced (Van der

Kleij et al., 2013) but these should be modeled in the statistical model.

The knowledge module contains the task model for ES if evidence centered

design (Mislevy et al., 2003) was used for test development. The task model

specifies the situations in which evidence can be collected for estimating profi-

ciency (Levy, 2013). The model specifies the features of the task, activities, or

situations and which information is collected using the task (Levy, 2013). Adaptive

form representation, adaptive curriculum sequencing, and adaptation in terms of

content can all be applied in ES.
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Wainess, Koenig, and Kerr (2011) described the CRESST methodology for

creating EG in which instruction and assessment are embedded within the player

interaction framework. Instruction, domain content, and assessment are presented

to the student using presentation objects that are directly presented to the student,

background objects that the student should actively pursue, person-to-object or

person-to-character/player interaction in which something is visually emphasized,

and storage or workshop objects that summarize instruction. This information is

included in the module.

6.4.4 User Interface Module

The user interface module is the only part of the test that the examinee actually

sees and interacts with (Parshall et al., 2002). It is the communication component

that controls the interactions between the student and the system (Nwana, 1990).

The module displays items and retrieves the responses from the student. A good

user interface demonstrates consistency and clarity and reflects good interface

design principles, see Parshall et al. (2002) and Bartram and Hambleton (2006).

The design of the user interface partly determines the student’s reactions to

taking the test, and their performance may be affected (Parshall et al., 2002). The

user interface of LT, AGT, CAT, and CCT should be easy to use and understand.

The design principles for the user interface are even more important in ALE,

ES, and EG than in the other test types. The user interface should be developed so

that the learner is intrinsically motivated to continue learning. In other test types,

motivation is often external. In ALE, ES, and EG, the design should also enhance

motivation. In EG, it is important that the learning follows from the game play, so

instruction and game mechanics should be integrated (Wainess et al., 2011).

6.4.5 Level of Adaptivity

In the previous parts of this section, attention was paid to the test modules and

the way they can be adapted for individual students. Wauters (2012) discussed

two levels of adaptivity: static and dynamic. In static environments, the source of

adaptivity remains constant while working in the environment (Wauters, 2012). In

dynamic environments, the source of adaptivity changes while testing.

CAT is often a static environment because adapting the difficulty of the items

that are administered is almost always the source of adaptivity. The set of items

from which the most suitable item is selected can be varied during testing. If this

occurs, CAT can be a dynamic environment.
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CCTs are almost always static environments because the source of adaptivity

remains the same during the testing. The item content can be varied throughout

the test, which could make the test dynamic.

In ALE and ES, the level of adaptation can be dynamic or static depending

on the way adaptation is specified (Wauters, 2012). Nowadays, ALE tend to be

dynamic and adaptive to make learning more efficient (Wauters, 2012).

EG are always dynamic because the students choose their own learning path

through the game. Everything is adapted based on the students play.

6.4.6 Context of Adaptation

Besides adapting the test itself, the context of the test administration can also be

adapted based on context features, such as the time when, place from, and device

on which the learner interacts with the system (Wauters, 2012). Assessments are

nowadays made on a variety of devices, at several locations, and at several points

in time. Adaptation of the context can be complicated in CAT and CCT. If the

stakes are high, it is questionable whether the time and place of assessment should

be varied between examinees. If a test is administered on multiple devices, it

should be investigated whether this results in the same item parameters. Since the

stakes are much lower in ALE, ES, and EG, the location and time of the learning

can be easily adapted to suit the learner’s preferences. The device on which

the environment is used is only limited by whether the device can display the

environment.

6.5 Assessment Approaches and Types of Tests

The type of test and its design imply that certain test types are more or less suitable

for use with a specific assessment approach. For each assessment approach it is

explored whether it is possible to use LT, AGT, CAT, CCT, ALE, ES, or EG.

6.5.1 Formative Assessment for Different Types of Tests

Van der Kleij et al. (2013) described three types of formative assessment: DBDM,

AfL, and DT. The focus in these types is on improving the learning process to

facilitate learning of the pupil and class.
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Data-based Decision Making

In DBDM, existing data sources are systematically analyzed for innovation of

teaching, curricula, and school performance (Schildkamp & Kuiper, 2010). The

implemented innovations are then evaluated. The results of LT and AGT can be

used for DBDM. The pupil’s ability can be estimated, used as input for innovation,

and used as a baseline before implementing the innovations. After implementation,

LT and AGT can be used for evaluation. The precision of the outcomes differs

between students.

CAT can provide the same information for DBDM as LT but it provides more

precision. Testing is tailored to the examinee’s ability, which results in a more

precise estimate or results in shorter tests (Parshall et al., 2002). One potential

practical problem of CAT for DBDM and other assessment approaches is that item

parameters have to be known before inclusion in the item pool. This implies that

the construction of such tests is challenging for schools. If a standardized CAT is

available, this type of assessment results in efficient and precise estimates that can

be used for innovating education.

CCT can have the same limitations as CAT, but if items are selected at the cutoff

point that was set by the school, they can be very useful. In DBDM, the school

can set learning goals (Van der Kleij et al., 2013) and, based on those goals, cutoff

points. Before innovation, which and how many students master the learning goal

can be determined. After, innovation, which and how many students now master

the learning goal can be determined.

ALE and ES are less suitable for DBDM. ALE and ES tailor the instruction and

assessment to the pupil’s knowledge level, so each pupil is offered an individual

learning path (Wauters, 2012). At the level of the pupil, it is possible to provide

additional instruction based on the test outcomes. However, it is difficult to use

the reported learning outcomes for innovating the instruction at the class or school

level because some students have learned a specific topic but others haven’t.

EG are not suitable for DBDM because the student chooses his own path

through the game. This makes it very difficult to aggregate results.

Assessment for Learning

In AfL, the focus is on the quality of the learning process (Van der Kleij et al.,

2013). The quality of the assessment process depends largely on the possibility to

use the test results to make inferences about student learning and accompanying
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adaptations to the instruction (Bennett, 2011). LT and AGT can be used to check

whether the student has understood a certain topic, but tests can become very long

if information is required about a lot of components of the topic. A second, related

problem is that a large number of tests is required if the student’s knowledge level

is measured frequently.

A more efficient solution is CAT, which requires on average fewer items to

obtain the same precision. It is also possible to use the system more frequently

by excluding previously administered items. The estimates in CAT can be very

precise. The teacher then knows which students need additional instruction and

on which topics. If estimates are based on subsets of items, it is possible to retrieve

a knowledge profile of the student. The information about the knowledge gaps

becomes even more precise when multidimensional IRT (MIRT) is used.

Traditionally, CCT could provide limited guidance for use in the day-to-day

process of learning. Since the development of CCT with multiple levels per

decision (Eggen & Straetmans, 2000; Spray, 1993) more guidance can be provided

by CCT. The use of MIRT can provide even more information about the student’s

knowledge level by making decisions on multiple dimensions, parts of tests, or on

multiple levels (Seitz & Frey, 2013; Van Groen & Eggen, 2014). Furthermore, the

same possibilities are available with CCT as with CAT.

The joint focus on adapting the instruction to the learner’s knowledge in AfL,

ALE, and ES means that these environments can be used for AfL. The instruction

can be adapted to the test outcomes. The system also detects changes in the

learner’s knowledge level that results from the teacher’s instruction and adapts its

instruction accordingly. Feedback can also be used to enhance learning.

EG are especially interesting for AfL. The student can choose his own path,

which makes it suitable to assess the learning process. The test developer should

make sure that it is beneficial for the student to choose the path that enhances

learning the most, for example, by giving incentives for choosing difficult levels.

Diagnostic Testing

DT is based on the assumption that how a task is solved is indicative of the

learner’s developmental stage (Van der Kleij et al., 2013). To obtain the precise

level of information that is required, fine grained assessment data about the

process have to be obtained (Rupp, Gushta, Mislevy, & Shaffer, 2010). In LT and

AGT, a large number of items is required to get detailed information at different
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abilities, which implies that only a small part of a content domain can be measured

or tests have to consist of a large number of items.

CAT has the advantage of tailoring the test to the student’s ability. This implies

that if fine grained information is required, items can be administered at the ability

estimate instead of testing at a wide ability range as in LT. The content of the next

item can be determined based on the specific misconceptions in the process of the

student solving the item (Van der Kleij et al., 2013).

CCT can reduce the test length even further because precision only has to be

obtained at the cutoff points. If several cutoff points are used per misconception,

a detailed report can be provided to the teacher. DT often measures multiple

abilities at the same time, which implies that a MIRT model is required. The

same item can be used for testing multiple misconceptions, so testing can be done

efficiently using a multidimensional classification test (Van Groen & Eggen, 2014).

ALE and ES can be used for DT. DT focuses on obtaining information about

the student’s misconceptions in solving tasks. ALE attempt to find these weaker

points in the student’s knowledge and offer additional learning material. ES can

also offer more tasks and help for improving weaker points (Wauters, 2012).

EG can provide the required information. The test developer can provide

information about the problem solving steps that were taken, or not, by the

student based on the student’s actions in the game. While playing the game,

students produce action sequences which draw on the skills or competencies

that are assessed (Shute & Ventura, 2014). These action sequences can provide

insight into the problem solving steps that the student used. The system has to be

developed in such a way that accurate information can be obtained at the correct

grain size.

6.5.2 Formative Evaluation for Different Types of Tests

Formative evaluation focuses on making judgments about programs or schools,

rather than individuals (Harlen, 2007; Stobart, 2008), to develop educational

policies in schools (Van der Kleij et al., 2013), and improving education (Scheerens

et al., 2003). Precision of the outcomes is required at the school level, but not on

the individual level. LT can be used for formative evaluation. LT and AGT are

relatively easy to develop and can be developed by the school. The test results

can show areas for possible improvement. Individual assessment results are

aggregated for formative evaluation (Sanders, 2013). If different test forms are

administered to groups of students, a wider range of topics can be covered.
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CAT is a more efficient solution for retrieving the same or more precise results.

If CAT is available for the intended domain, the results can be used for formative

evaluation. If such a test is not available, it will be difficult to develop new CAT or

CCT for the intended purposes.

ALE and ES can be used for formative evaluation, but the results have to

be manually aggregated to see which areas of the educational program require

improvement. In ALE and ES, students make their own test, which requires more

effort to draw conclusions at the school level.

The test results of EG are even more difficult to aggregate. Students choose

their own path through the environment, which means that no structured data are

available for aggregation.

6.5.3 Summative Assessment for Different Types of Tests

Summative assessment focuses on what has been learned by the end of the process

(Stobart, 2008). A decision is made about the mastery of a content domain by the

pupil or class (Van der Kleij et al., 2013). LT and AGT can be used for summative

assessment, because students’ estimated ability can be ranked, and based on the

ranking, the best performing students can be selected. Another possibility is to

determine a cutoff point on the ability scale that is used to decide whether an

examinee passes the test.

CAT can be used to make judgments about examinees. CAT provides ability

estimates just as LT, but requires fewer items on average (Mellenberg, 2011). This

means that more topics can be measured, topics can be measured in more detail,

or tests can become shorter.

CCT can be used to make judgments about examinees because they classify

examinees into different levels. CCT can be more efficient than CAT, LT, and AGT

when a cutoff point is specified before test administration.

ALE, ES, and EG cannot be used for summative assessment. Since all students

follow their own learning path, comparing individual students and deciding

which students have enough knowledge becomes troublesome. An additional

problem is that the judgments about students are often made about a large range

of topics. These environments have a small grain size, which is in contrast to the

requirements of the judgments for summative assessment.
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6.5.4 Summative Evaluation for Different Types of Tests

In summative evaluation, judgments are made about schools (Van der Kleij et al.,

2013) or educational systems. LT and AGT are often used for summative evaluation

because precision is required at the group level, but not on the individual level.

Thus, if a test form with limited accuracy is administered, the overall outcome can

still be reliable at the group level. Different test forms can be used to cover a wide

range of topics.

CAT tailors the test to the individual examinee’s ability. Since measurement is

intended to be at the group level in summative evaluation, the choice for tailoring

tests to the individual level seems strange.

In summative evaluation, information is gathered about how much groups of

students know about a topic. With this information, judgments are made about

the school or about the educational system. CCT determines whether students

pass or fail the test, but based on the test, it is not known how much the students

know. This implies that CCT is not a logical choice for summative evaluation.

ALE, ES, and EG appear to be unsuitable for summative evaluation because

of their focus on the individual learning path. It is difficult to make a judgment

about the school if just individual results are available.

6.6 Discussion

Testing can serve different goals, and one test can have several goals. The assess-

ment should be suitable for all those goals. Thus, tests have to be designed so that

their outcomes are sufficiently accurate, have the correct grain size, are matched

to the stakes of testing, and have a test length suitable for the testing purpose and

population.

Not all assessment types are suitable for all assessment approaches. Before

development of an assessment can start, the precise test goals and the intended

use of the test results should be determined. Based on these goals, which type of

test is the most suitable and feasible for the assessment can be determined. After

specification of the type of test, it can be determined how the different modules

of the test should look like and how testing can be adapted. Test design and

adaptivity of the assessment should be closely aligned to gain the intended test

outcomes and implications of those outcomes.
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The current article was limited to types of digital assessments that can be

scored by a computer. This means that tests that are paper-based or that need to

be judged by evaluators were not included in the study. Item selection was limited

to selection by the computer, except for educational gaming, but tests also exist in

which the student selects the items.
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Chapter 7

Epilogue

Computerized adaptive tests (CATs) were developed to obtain efficient estimates

of examinees’ abilities, but Lewis and Sheehan (1990), Reckase (1983), Spray and

Reckase (1994), and Weiss and Kingsbury (1984) showed that CATs can be used for

classification testing (Eggen & Straetmans, 2000). In computerized classification

tests (CCTs), the goal is not to obtain an estimate, but to classify the examinee

into one of multiple categories. A CCT attempts to find a balance between the

test length and the level of confidence in the accuracy of the decision (Bartroff,

Finkelman, & Lai, 2008). Testing stops when enough evidence is available to make

a decision.

Computerized classification testing requires a method that selects the items

and a method that decides whether testing can be stopped and which decision is

made. Both methods influence the accuracy and efficiency of a CCT (Thompson,

2009). Several classification methods are available for unidimensional classification

testing, including the method based on Wald’s (1947/1973) sequential probability

ratio test (SPRT; Reckase, 1983) and the method that stops testing if the confidence

interval surrounding the ability estimate no longer includes the cutoff points

(Kingsbury & Weiss, 1979).

A large variety of item selection methods is available for unidimensional

classification testing (Eggen, 1999; Thompson, 2009). These include maximization

of information at the ability estimate or at the cutoff point. If multiple cutoff points

are specified, alternative methods are available (Eggen & Straetmans, 2000; Spray,

1993; Wouda & Eggen, 2009).

A wide range of classification and item selection methods are available for CAT

in which constructs are modeled with unidimensional item response theory (IRT).

For multidimensional IRT, however, knowledge about CAT for estimating ability

is still building. Literature about CAT to make classification decisions was almost

entirely absent when the research for this thesis started.
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Four research questions were formulated in the introduction of this thesis.

Some answers to these questions will be provided next. After discussing the

research questions, some remarks will be made about the research in this thesis.

The last section of the epilogue discusses a few directions for further research.

7.1 Discussion of the Research Questions

The first research question concerned adaptive item selection methods for tests

with multiple cutoff points:

How can item selection by maximizing information at the cutoff point(s) and maximization

at the ability estimate be combined to obtain accurate and efficient classification decisions,

and tailoring item selection to the student’s ability?

Current item selection methods can be divided into two types: adaptive and

non-adaptive methods. The first group of methods adapts the selection of the

items to the student’s ability. An example is the method that maximizes the

information in the test at the student’s current ability estimate. The second group

of methods does not tailor the test to the student’s ability, but uses a different

criterion for item selection. The methods that maximize information at the cutoff

point or some combination of the cutoff points are examples of such methods.

These methods tend to be more efficient when making classification decisions.

Four item selection methods were developed in Chapter 2 that form a hybrid

between the types of item selection methods. These methods can be used when a

classification decision is made into one of more than two categories. The new item

selection methods use multiple objective approaches to combine the efficiency of

the methods that maximize information at the cutoff points with the tailoring of

the test to the examinee’s ability by the method that maximizes information at the

current ability estimate.

The efficiency and accuracy of the four new and four existing methods were

investigated using simulations with a simulated and an existing item pool. Ran-

dom item selection was found to be the least efficient and accurate method. The

differences in the average test length and the proportion of correct decisions were

small for the other methods. The weighting method was found to be the most

accurate method in the majority of the simulations and it also required fewer items

than the other new methods. When compared to existing methods, this method

was as effective and efficient as the majority of the other methods. The weighting
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method was also applied to multidimensional item response theory (MIRT) in

Chapters 3 and 5. The findings of Chapter 2 imply that item selection can be

tailored to the student’s ability without administering many additional items.

One conclusion results from the simulations in Chapter 2, but similar findings

were reported in Chapters 3, 4, and 5: differences in the efficiency and the accuracy

between item selection methods are very small at the population level, except for

random item selection. Nevertheless, in a practical setting, item selection should

be investigated at the level of individual students. Differences in the test length

and the classifications at different points on the ability scale were not addressed.

The second research question concerns making classification decisions in the

context of multidimensional item response theory:

How can multidimensional classification decisions be made on all dimensions simultane-

ously for tests with between- and within-dimensionality?

Spray, Abdel-Fattah, Huang, and Lau (1997) concluded that the SPRT procedure

could not be easily adapted to make multidimensional classification decisions.

They investigated the possibility of using the SPRT in the context of what is

nowadays called within-dimensionality.

However, in the context of between-dimensionality, both the SPRT and the

confidence interval method can be used to make classification decisions. Seitz and

Frey (2013a, 2013b) showed that it was possible to apply these methods to tests

with between-dimensionality. In their methods, decisions can be made for each

dimension using unidimensional classification methods.

When educational assessments are used to determine whether a student masters

a topic or not, a decision is required on the entire test, instead of on each of the

underlying subscales. Making such decisions was addressed in Chapters 3 and 5.

In Chapter 3, it was shown that decisions can be made on all dimensions

simultaneously. This implies that it is possible to determine whether a student

masters a topic or not. The same method can also be used to decide at which of

the multiple levels a student performs.

A second classification method, Kingsbury and Weiss’s (1979) confidence inter-

val method was extended in Chapter 5 to make decisions on tests with between-

dimensionality. The ability estimates based on the subscales have to be combined

first before a classification decision can be made. After combining the estimates,

the confidence interval around the combined estimate can be used with simple

decision rules to classify students.
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Although Spray et al. (1997) concluded that the SPRT could not be extended

straightforwardly to multidimensional CCT, the SPRT was applied to classification

testing in case of within-dimensionality in Chapter 4. The multidimensional space

has to be reduced to a unidimensional line, the reference composite (Wang, 1985,

1986, as described in Reckase, 2009), before the SPRT can be used. The SPRT then

uses the reference composite to make the decisions.

In Chapter 5, the reference composite was used to make classification decisions

with Kingsbury and Weiss’s (1979) confidence interval method on tests with

within-dimensionality. The confidence interval surrounding the proficiency, as

estimated on the reference composite, is used to make the classification decision.

The third research question dealt with selecting the items in multidimensional

classification testing:

How can items be selected in tests with between- and within-dimensionality so that

accurate and efficient decisions can be made?

A large variety of item selection methods exists for MCAT. Unfortunately,

these methods were developed to obtain an efficient and precise ability estimate.

Obviously, this is caused by the fact that until recently, no classification methods

were available in the context of MIRT. Some of the item selection methods that

were developed to obtain an ability estimate can be used when the goal of the

multidimensional CAT (MCAT) is to make a classification decision.

It was concluded in Chapter 3 that unidimensional item selection methods can

be used to select the items in a test with between-dimensionality. It is only possible

to use these methods if the non-diagonal elements of the information matrix are

zero. If (weighted) maximum likelihood estimates are used, these elements are

zero and unidimensional methods can be used. However, if an estimate is used

that results in non-zero non-diagonal elements, multidimensional methods have

to be used to select the items.

Items were selected in Chapters 3 and 5 for tests with between-dimensionality

using unidimensional methods that maximize information at the current ability

estimate or at a weighted combination of the cutoff points (the weighting method).

One important remark has to be made regarding item selection for between-

dimensional tests: the test developer should ensure that items are selected for

all subscales, because if not, classification decisions will be contrived. A simple

content control method, such as Kingsbury and Zara’s (1989)-approach, can be

used to ensure this.
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In Chapter 4, items were selected for tests with within-dimensionality. Segall’s

(1996) item selection method that maximizes the determinant of the information

matrix at the current ability estimate was used. Since simulees were classified into

one of two categories, Segall’s (1996) method could be adapted to maximize the

determinant of the information matrix at the cutoff point or at the projected ability

estimate.

In Chapter 5, multiple cutoff points were set for the simulations with within-

dimensionality. This implied that the method that maximized the determinant of

the information matrix at the cutoff point could not be used. Thus a method that

takes multiple cutoff points into account had to be used. The weighting method

of Chapter 2 was adapted to select items that had the largest determinant of the

information matrix at a weighted combination of the cutoff points.

The fourth research question concerned the context of CCT and the design of

systems for administering CCTS:

In which contexts can computerized classification testing be used, and how should the test

be designed in those contexts?

Four assessment approaches were explored in Chapter 6: formative assessment,

formative evaluation, summative assessment, and summative evaluation. Assess-

ment focuses on the individual student or class, whereas evaluation focuses on

the school or program (Harlen, 2007). If the focus is on enhancing learning, it

is formative assessment. If the focus is on making a decision after the learning

process is finished, it is summative assessment.

Computerized classification tests can be used for formative assessment if the

level of decision making is fine-grained enough for the testing goal. CCTs can be

used to create a knowledge profile of the student. Teachers can use this profile to

detect weak areas in the student’s knowledge and adapt instruction accordingly.

CCTs can also provide information for developing school policy and can be used

for innovation at the program or school level. Individual test results have to be

aggregated to the correct level in order to detect content areas for improvement.

Summative assessments are used to determine whether a student masters a

content domain (Van der Kleij, 2013). A CCT can provide this information because

making judgments about mastery is the main goal of a computerized classification

test. If judgments have to be made about schools or educational programs, as in

summative evaluation, the results have to be aggregated to the required level.
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CCTs were originally developed to make judgments which implies that the

summative functions of assessments were supported. Nowadays, formative func-

tions are also supported but the additional requirements for formative functions

have to be dealt with. One such solution was the development of knowledge

profiles that can be used to distinguish the student’s weaker knowledge areas.

In the second part of the question, the focus is on the design of systems for

administering CCTs. Wauters (2012) and Nwana (1990) distinguished four different

modules for assessment systems: student, tutor, knowledge, and user interface

module. A short overview is given here for CCT and in Chapter 6 for other types

of digital tests.

The student module contains all information concerning the student (Wauters,

2012). For a CCT, the module monitors which items were administered to the

student, and if necessary, also the current ability estimate. The latter can be used

to select the items or to make the classification decision.

The tutor module regulates the instructional interactions with the student

(Nwana, 1990). In a CCT, the module selects the items. This implies that the

module interacts with the student and knowledge modules to select the items.

The items are stored within the knowledge module. This includes item in-

formation like item parameters, content specifications, but also the item content.

The knowledge module contains the calibrated item bank including the item text,

answer alternatives, and scoring keys.

The user interface module is the part of the test that the student sees and

interacts with (Parshall, Spray, Kalohn, & Davey, 2002). The user interface should

be easy to use and easy to understand, because otherwise, the student’s reactions

to taking the test and his or her performance may be affected (Parshall et al., 2002).

7.2 Further Remarks

As a result of the research for this thesis, some remarks can be made. First, some

general remarks will be made about the studies and computerized classification

testing. Then, remarks will be made about the research for Chapters 2 to 6.

7.2.1 General Remarks About the Research in this Thesis

One of the things that was noted about the research into computerized adaptive

(classification) testing and psychometrics is that the majority of research starts

with a psychometric model for which data are then simulated or gathered. The
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other way around, selecting a measurement problem and then developing a

psychometric model for solving the measurement problem, is less common. By

using real item pools and data, psychometric researchers can be challenged to

develop models that can be used in actual testing.

The majority of the research into computerized classification testing, and

computerized adaptive testing in general, is based on simulation studies. Typically,

one or more item pools are simulated that are then used for drawing conclusions

about the characteristics, accuracy, and efficiency of classification and item selection

methods. As an alternative, operational item pools or datasets can be used.

Although the use of operational item pools or datasets sometimes places limits on

the research that is possible, it enables the investigation of characteristics, accuracy,

and efficiency in a more realistic and therefore often more valuable setting.

One of the topics that must be addressed when developing an educational CCT

is content validity. The administered items must be representative of the intended

construct. Content control methods can be used to ensure that the intended

construct is measured. Nevertheless, the impact of content control is often not

included in studies about CAT and CCT.

Another topic that should be addressed more often when CCTs and tests in

general are developed is the selection of an item response theory model. Depend-

ing on the model, different possibilities with the model and the test results exist.

Nevertheless, the majority of educational tests are still based on unidimensional

item response theory models. In the past, this made a great deal of sense due to

the lack of software for multidimensional item response theory. However, over the

last couple of years, following the publication of Reckase (2009), a lot of research

has been done and knowledge will be able to grow even more if test developers

start applying MIRT more often to actual test development problems.

If a decision is made with the SPRT, three values are set: α, β, and δ. In the

simulations in Chapters 2 to 5, decisions were made with equal values for α and β,

but also with identical values for all cutoff points. α and β can be set to values that

represent the loss caused by making a type I or a type II error. Different values can

also be set for cutoff points for the same decision when a classification decision is

made into one of three or more levels. In the multidimensional case, the values

can also be varied over dimensions. In the simulation studies, the indifference

regions were set to be symmetric. It is possible to specify asymmetric indifference

regions or to specify different values for δ for different classification decisions or

dimensions. In the simulations with between-dimensionality, δ was varied over
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decisions. In the simulations with unidimensionality or within-dimensionality, δ

was equal for all SPRTs. Unfortunately, research about decision criteria for δ is not

available yet.

In this thesis, the γ for the confidence interval method was also set to be equal

over dimensions and decisions. If needed γ can be varied over decisions and

dimensions.

A well-known characteristic of the SPRT is that accuracy and efficiency depend

on the position of the student on the ability scale relative to the position of the

cutoff point. The studies in Chapters 2 to 5 addressed primarily the average test

length and the proportion of consistent decisions for the entire set of simulees.

As Van Groen and Verschoor (2010) showed for the unidimensional SPRT, the

average test length of simulees whose ability is close to the cutoff point is much

higher than for those whose ability is further away from the cutoff point. The

same result was presented in Chapter 4 for within-dimensionality. The proportion

of consistent decisions is also influenced by the distance between the ability and

the cutoff point. If the difference becomes very small, the proportion goes to 0.5

(Eggen & Straetmans, 2000; Van Groen & Verschoor, 2010). Chapter 4 showed that

in the within-dimensional case, this applies to all ability combinations close to the

cutoff point on the reference composite. Test developers should consider these

problems with the SPRT when applying the method to high-stakes testing.

Differences in the average test length and the proportion of consistent decisions

were inspected in Chapters 2 to 5 based on ideas about the relevance of the size of

the difference. An alternative approach would be to use formal statistical tests;

it would then have been clear whether differences are significant or not. Effect

size could also have been used to determine whether a difference in test length or

consistency was relevant.

The simulation studies in this thesis showed that the differences in the average

test length and the proportion of consistent decisions between adaptive and non-

adaptive item selection methods tended to be negligible. This implies that, in

contrast to the popular idea that maximization at the cutoff point results in the

shortest and most accurate tests, adaptive item selection methods can be used

to tailor item selection to the student’s ability. The advantages of tailoring item

selection are, just as in CATs for estimating ability, that all students are challenged

at their own level, a larger set of the items in the item pool are used, and a much

larger variety of test forms within a group of students.
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One remark can be made about the performance of random item selection in

the simulation studies for Chapters 2 to 5. The method required more items in the

majority of the simulations and also resulted in the least accurate decisions. The

choice for an information-based method results on average in shorter tests with

more accurate decisions.

7.2.2 Remarks About Chapter 2: Item Selection Methods for Multiple Level

Classifications

Two remarks are made here about Chapter 2. The objective functions that were

developed for Chapter 2 include all cutoff points that are set for the decision in

addition to the current ability estimate. One could wonder whether it is necessary

to include all cutoff points for all students for all test lengths. If at some point

during the testing process it is determined that a student’s ability is higher than

the second cutoff point, is it then necessary to include the first cutoff point in

the objective function? Also, if it is save to assume that ability is probably not

higher than the second cutoff point, is it then necessary to include the third cutoff

point in the objective function? An alternative approach could be to use adaptive

selection to select which cutoff points are included in the objective function.

The second remark that could be made about the simulations of Chapter 2

is that the results of the simulations with the exposure method are probably

less influenced by the exposure control than is typically found in actual testing

situations. In such situations, test developers also want to ensure that groups of

students with a relatively similar ability get different test forms. The modified

Sympson and Hetter (1985) method, which was used by Eggen and Straetmans

(2000), does not prevent that such groups of students receive very similar tests.

An alternative approach would be to implement an exposure approach that takes

the exposure into account per range of the ability scale.

7.2.3 Remarks About Chapter 3: Between-Dimensional Classification Testing

The first remark regarding Chapter 3 is that it would have been interesting if a

flexible test length had been specified in the simulations. By specifying a flexible

test length, it can be investigated which test length is required for maintaining

the consistency of the decisions. Specifying a fixed test length that is lower than

the number of relevant items in the item pool enables the comparison of the

proportion of consistent decisions for different item selection methods; however,

investigation of the required number of items can be interesting for practitioners.
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The choice to use post-hoc simulations in which existing data are used to

compare item selection methods and different settings for the SPRT has one

major problem attached to it: no true classification is available. This implies

that no baseline classification can be determined. The End of Primary School

Test (Cito, 2012) gives a recommendation about the level of secondary education.

As a solution to this problem, the decisions on the entire test were compared

with this recommendation. Obviously, both methods contribute to classification

inconsistencies. Nevertheless, it would be interesting to repeat the simulations with

the item pool with generated simulees because that would allow an investigation

into classification accuracy.

The third remark about Chapter 3 concerns the limited knowledge about

multidimensional item response theory in practical applications. In the preparation

phase of the post-hoc simulations, it became apparent that a lot of practical

points concerning the application of MIRT in CAT are not described. To give an

example for tests with between-dimensionality, the fact that information is only

available if items regarding that domain have been administered is not described

in the literature. Seitz and Frey (2013a) selected items using maximization of the

determinant of the information matrix. This method suggests that information has

been gathered at all dimensions, but in fact, information has only been gathered

at dimensions for which items have been selected. Such practical points are well

described for unidimensional IRT, but not for multidimensional IRT.

7.2.4 Remarks About Chapter 4: Within-Dimensional Classification Testing

Multiple remarks can be made regarding Chapter 4. In the simulation study,

only one dataset was used to investigate the efficiency and the consistency of

the classification and item selection methods. If another dataset had been used,

different results would have been possible. The study also contained only one

cutoff point. No conclusions can be drawn for tests with within-dimensionality in

which a student has to be classified into one of more than two levels. The cutoff

point that was used was set in the center of the ability distribution. In actual

testing programs, the cutoff can be at a different point in the ability distribution;

this implies that the reported results cannot be generalized to other situations.

The ACT item pool that was used was previously calibrated with a two-

dimensional model. No simulation results are available for tests modeled with

more dimensions. This implies that no knowledge is available about the perfor-

mance of the methods on tests with more than two dimensions.
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One problem became apparent when simulations were conducted with mul-

tidimensional data and the classifications with the unidimensional and multidi-

mensional SPRT were compared. It was expected that the multidimensional SPRT

would provide more consistent and more efficient classifications. If items were

selected at random, the expected results were found. However, if a method was

used that incorporates the current ability estimate, unexpected results were found.

The proportion of consistent decisions of the unidimensional SPRT was sometimes

slightly higher than the consistency of the multidimensional decisions. At the time,

it was thought that the results were caused by differences in the specifications

of the SPRTs because δ and the cutoff points had to be matched between the

unidimensional and multidimensional simulations. However, when the simulation

study for Chapter 5 was conducted, it became apparent that the results could also

have been caused by inaccuracies or instabilities in the ability estimates.

In the last part of the simulation study of Chapter 4, classifications by the

unidimensional and the multidimensional SPRT were compared. As a research

topic, this comparison makes sense. When developing educational tests, the test

developers should first determine which model; a unidimensional or a multidi-

mensional model, fits the data. Based on differences in model fit, a model can

be selected for the test application. After the model has been selected, the per-

formance of the item selection and classification methods for the selected model

can be investigated. Thus, investigating the performance of unidimensional and

multidimensional item selection and classification methods for the same datasets

does not make sense from a model selection perspective.

A remark was already made in the conclusion of Chapter 4 about the use of

the classification method with a non-orthogonal calibration. The SPRT and item

selection methods can be used if a non-orthogonal model has been used in the

calibration phase. Nevertheless, test developers should select an orthogonal or non-

orthogonal model based on model fit criteria and then investigate the performance

of the classification and item selection methods; however, they should not select

the model based on differences in the performance of the classification methods.

7.2.5 Remarks About Chapter 5: Multidimensional Classification Testing

In Chapter 5, weighted maximum likelihood estimates were used in the simulations

for between- and within-dimensionality. The estimates based on the data that

were generated with a between-dimensional model appeared to be precise, but the

estimates for the data with a within-dimensional model appeared to be less precise.
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Estimates sometimes diverged from their true values; and for other examinees,

compensation between the estimates was found. It was determined that the

deviations increased if more dimensions had to be estimated or the number

of items decreased. Almost all studies about multidimensional computerized

adaptive testing use a Bayesian estimator. Here, a weighted maximum likelihood

estimator was used. Although the latter has the advantage that the estimates

are not influenced by the choice of a prior distribution, Bayesian estimators

have the advantage that more knowledge is available about their characteristics.

Unfortunately, only a few very small comparison studies are available. This implies

that more research is needed into the characteristics of (weighted) maximum

likelihood estimation; in addition, a substantial comparison study would be

welcome.

The consistency and efficiency of the SPRT and the confidence interval method

could be compared based on Chapter 5 for three item selection methods for two

types of multidimensionality. One item pool was investigated in Chapter 5 with

a limited set of settings for the classification methods. The simulations were

too limited to enable conclusions about which method outperforms the other

method. When comparing the results, researchers should ensure that either the

test length or the proportion of consistent decisions is equal for both methods. By

fixing test length at a lower length than the number of relevant items in the item

pool, one can compare the proportion of consistent decisions. It is important that

the classifications with which the decisions are compared for the proportion of

consistent decisions are the same. Although that seems logical, this was found

to be challenging for decisions that were based on multiple dimensions. Fixing

the proportion of consistent decisions can be achieved by matching, but this

requires simulations with a large range of settings for the classification methods.

The average test length can then be compared, in addition to investigation of

differences in test length and local classification consistency at different points on

the ability scale. The most interesting solution to make a comparison between

the methods would be based on a mathematical relationship between the two

methods; however, this mathematical relationship has not been determined yet.

In Chapter 5, the classifications based on a between- and a within-dimensional

model could not be compared because different models had been used in the

simulation studies. It could be interesting to compare those classifications from

a research point of view. Hartig and Höhler (2008) investigated the differences

in ability estimates between the two models, but a similar study that is focused



Chapter 7. Epilogue 167

on classification testing would be interesting. In test development, however, test

developers should determine which model fits the data before the performance of

the classification methods can be investigated.

In the simulations for between-dimensionality in Chapter 5, one sequence of

dimensions was used. However, another sequence would have been possible. The

first item was selected from the first dimension, the second item from the second

dimension, and so on. In theory, this could have influenced the number of items

that were required to make a decision. The probability that the decision itself was

influenced is very small, but small effects on the test length are not ruled out. The

inclusion of testlet items can potentially increase the sequencing effect. In another

simulation study, the effects of dimension sequencing could be investigated.

7.2.6 Remarks About Chapter 6: Assessment Approaches and Types of Digital

Assessments

Although many remarks are possible about Chapter 6, the discussion here is

limited to two remarks about the implications for computerized classification

testing. The first remark concerns the implementation of the dimensions of

adaptivity, as defined by Wauters (2012), for CCTs. Some dimensions of adaptivity

have been a research topic for many years, but other dimensions and aspects of

dimensions are still open for investigation. For example, curriculum sequencing is

an aspect that has received little attention. Curriculum sequencing can be useful

if a CCT is to be used for formative assessment. The combination of knowledge

profiles with selecting the most relevant topics from the item bank could be a

contributing factor in enhancing the learning from the assessment.

The second remark concerns the depth of the discussion of assessment ap-

proaches and test design for computerized classification testing. It would be

interesting to explore these topics further and it would be useful for the practice

of developing educational tests if more practical guidelines would be developed

for the use of CCT for different assessment approaches and the design of the

test modules for those approaches. Currently, limited practical guidelines are

available for developing a CCT (Bartram & Hambleton, 2006; Parshall et al., 2002;

Thompson, 2007), but these concern design or psychometric guidelines instead of

focusing on the educational implications of the choices that are being made.
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7.3 Future Directions

Several possible lines of further research have already been described in this

epilogue or in the discussion sections of earlier chapters, but some additional

directions are discussed next.

In the current thesis, two methods were included to make the decisions: the

SPRT and the confidence interval method. Other methods, such as the stochas-

tically curtailed SPRT (Finkelman, 2008) and the generalized likelihood ratio

(Thompson, 2011), were not included. This implies that these methods currently

are not available to make multidimensional classification decisions. It would be

interesting to investigate whether these methods can also be applied to MCCT.

For some tests, the application of IRT models is not possible or is considered to

be too complicated. As an alternative, curtailed and stochastic curtailed methods

were developed that are based on sumscores (Finkelman, Smits, Kim, & Riley,

2012). It would be interesting to investigate whether these methods can be

applied to educational assessments and how they perform in comparison to CCT.

Finkelman et al. (2012) compared the methods with polytomous IRT models, but

it is not known yet whether the same results hold for dichotomous IRT models.

Another interesting possibility would be to apply tree-based item response

methods (De Boeck & Partchev, 2012) to make classification decisions in the context

of educational assessment. A possibility to explore would be the development of

adaptive tests, but also to compare tree-based item response methods with item

response theory-based classification testing.

One major concern during test development is that items function the same

for students with similar ability (Holland & Wainer, 1994); thus, test developers

investigate differential item functioning (DIF). If it is determined that DIF is not

present, this supports the construct validity of the test (Van Groen, Ten Klooster,

Taal, Van de Laar, & Glas, 2010). It would be interesting to investigate whether

decisions that were made by a CCT are sensitive to DIF.

Computerized classification testing requires the specification of cutoff points,

but how these cutoff points were specified received little attention in this thesis.

The cutoff points in Chapters 3 and 5 were determined using existing cutoff points

on the scale score that was already available. Standard setting methods (Cizek &

Bunch, 2007) are a well developed area of research, but their application to CAT

to obtain ability estimates or to make classification decisions has received little

attention. It would be an interesting topic for further study.
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Typically, the differences in classification consistency and efficiency between

different item selection methods, excluding selecting the items at random, tend

to be small. The newly developed expected log-likelihood ratio (ELR) method

by Nydick (2014) resulted in a lower average test length than maximization of

information at the cutoff point or Kullback-Leibler divergence (Chang & Ying,

1996) in simulations with a three-parameter logistic IRT model. The method is

based on optimizing the expected SPRT given the current ability estimate. It

would be interesting to explore whether these findings can be replicated with a

two-parameter IRT model and also to investigate whether it is possible to extend

the method to the generalized likelihood ratio method (Thompson, 2011). The

method can, in its current form, only be used when students are classified into

one of two categories for unidimensional IRT. It is an open question whether the

method can be expanded to make classification decisions into one of more than

two categories and whether the model can be applied to multidimensional IRT.

The last discussed direction for future research that is discussed here concerns

the use of other multidimensional item response theory models than the multidi-

mensional two-parameter logistic model. Other models, such as non-compensatory

or three-parameter models, could also be used to make classification decisions. It

would be interesting to see whether the developed classification and item selection

methods have to be adapted and how they perform with these models.
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Summary

Computerized adaptive tests (CATs) were developed to obtain an efficient estimate

of a student’s ability, but they can also be used to classify an examinee into one of

multiple levels. The advantages of using computerized classification tests (CCTs)

are that item selection can also be tailored to the student’s ability, but tests are

often shorter than other CATs, and accuracy can be maintained.

Unidimensional CAT with multiple cutoff points was investigated in Chapter 2.

A CCT requires a method to select the items. Besides random selection, methods

use some statistical criterion with or without the current ability estimate for

selecting the items. A second method decides whether testing can be stopped and

classifies the student into one of two or more mutually exclusive categories. Item

selection for unidimensional classification testing with multiple cutoff points was

investigated in Chapter 2. Important advantages of dynamically assembling tests

during test administration are that item selection can be tailored to the individual

student’s ability, a larger part of the item pool is used, and a much larger spread

in test forms within groups of students is realized. The majority of currently

available item selection methods in CCT maximize information at one point on the

ability scale, but in a test with multiple cutoff points, the selection methods can

take all these points simultaneously into account. If one objective is specified for

each cutoff point, the objectives can be combined into one optimization function

using multiple objective approaches. Several methods were developed in Chapter

2 that incorporate the measurement efficiency of maximizing information at the

cutoff points with the tailoring of the method that maximizes information at the

current ability estimate. Simulation studies were used to compare the efficiency

and accuracy of eight selection methods using a classification method based on the

sequential probability ratio test (SPRT). Small differences were found in accuracy

and efficiency between different methods depending on the item pool and the

settings of the classification method. The size of the indifference region had

little influence on accuracy but considerable influence on efficiency. Content and

exposure control had little influence on accuracy and efficiency.
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Unidimensional classification decisions were made in Chapter 2, but multi-

dimensional decisions were addressed in Chapters 3 to 5. Several methods are

available to make classification decisions for constructs modeled using a unidi-

mensional item response theory model. These methods stop testing when enough

confidence has been reached to make the decision. However, few classification

methods are available for multidimensional constructs. A classification method

was presented in Chapter 3 for adaptive classification testing with a multidimen-

sional item response theory model in which items are intended to measure one

trait each, e.g., between-dimensionality. In the case of between-dimensionality,

an existing method can be applied to classification testing. This method makes

classification decisions per dimension using the SPRT. The method was extended

to include decision making based on all the dimensions in the test simultaneously,

on several dimensions, and on subsets of items. A measure is presented that

provides information about the support for the decisions. Items were selected that

provided the most information at the current ability estimate or at a weighted

combination of the cutoff points. The latter method was developed in Chapter 2

for unidimensional CCT. An empirical example illustrates the discussed methods.

Chapter 3 focused on making classification decisions on tests in which each item

is intended to measure one ability. In contrast, in Chapter 4 items were intended

to measure multiple abilities. A popular unidimensional classification method,

which was also used in Chapter 2, was applied to tests with within-dimensionality.

The reference composite was used in conjunction with the sequential probability

ratio test to make decisions and decide whether testing could be stopped before

the maximum test length was reached. Item selection methods were provided

that maximize the determinant of the information matrix at the cutoff point or

the projected ability estimate. A simulation study illustrated the efficiency and

effectiveness of the classification method for different settings of the SPRT. Simula-

tions were run with the two item selection methods, random item selection, and

maximization of the determinant of the information matrix at the ability estimate

in the multidimensional space. The study also showed that the multidimensional

SPRT had the same characteristics as the unidimensional SPRT and outperformed

the unidimensional SPRT when applied to multidimensional data with random

item selection.
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Two classification methods were applied in Chapter 5 to tests with between-

and within-dimensionality. The SPRT was applied in Chapters 3 and 4 to tests with

between- and within-dimensionality. A second popular unidimensional classifica-

tion method uses the confidence interval surrounding the ability estimates. This

method also exists for between-dimensionality, but can make only one decision

per dimension. This method was extended in Chapter 5 to make decisions on

the entire multidimensional test, on combinations of the test dimensions, and on

subsets of the items that load on a specific dimension. This method cannot be

used for tests with within-dimensionality, but as shown in Chapter 4, decisions

can also be made with the reference composite. The confidence region method

was adapted in Chapter 5 for tests with within-dimensionality. The current ability

estimate was projected at the reference composite, and testing could be stopped

if the confidence regions surrounding the projected ability estimates no longer

included a cutoff point. Items were selected in Chapter 5 based on maximization

of the (determinant of the) information matrix at the current ability estimate or

based on the weighting method of Chapter 2. This method was adapted in Chapter

5 for item selection in the case of within-dimensionality. Existing item banks were

used to investigate the performance of the extended classification methods for

between-dimensionality and the classification methods for within-dimensionality

that were developed in Chapters 4 and 5. The required test length and the consis-

tency of the classifications were investigated for multiple item selection methods

and for several settings of the classification methods.

The context of computerized classification testing was explored in Chapter 6.

The usability of computerized classification tests for formative assessment was

investigated, formative evaluation, summative assessment, and summative evalua-

tion. In addition to CCT, six other types of digital assessments were discussed:

linear testing, automatically generated tests, computerized adaptive testing for

estimating ability, adaptive learning environments, educational simulations, and

educational games. The types of tests vary in the design of their modules (stu-

dent, tutor, knowledge, and user interface), in the way testing is adapted to the

individual student’s current knowledge level, and in the possibility of using the

test for different test approaches. It was concluded that tests should be designed

in a way that outcomes are sufficiently accurate and that the tests are suitable for

the testing goals, have the correct grain size, and have a test length suitable for the

testing purpose and testing population.





Samenvatting Adaptieve toetsen voor het nemen van

unidimensionele en multidimensionele classificatie

beslissingen

Computergestuurde adaptieve toetsen (CAT) werden ontwikkeld om een efficiënte

schatting van de vaardigheid van een student te verkrijgen. CAT kan echter ook

worden gebruikt om studenten te classificeren in één uit twee of meer niveaus.

Voordelen van computergestuurde classificatietoetsen (CCT) zijn dat de item

selectie afgestemd kan worden op de vaardigheid van de student, de toetsen veelal

korter zijn dan bij andere adaptieve toetsen het geval is en dat de accuraatheid

van de classificatiebeslissingen bewaakt kan worden.

Computergestuurde classificatietoetsen vereisen een methode die de items voor

de toets selecteert. Naast aselecte trekking zijn er methoden die gebaseerd zijn

op een statistisch criterium met of zonder gebruik van de lopende vaardigheids-

schatting. Itemselectie voor unidimensionele classificatietoetsen is onderzocht in

hoofdstuk 2. Een groot voordeel van het dynamisch samenstellen van toetsen

gedurende de toetsafname is dat de itemselectie daarbij afgestemd kan worden

op de vaardigheid van de individuele leerling, er effectiever gebruik gemaakt

wordt van de itembank en er sprake is van een grote spreiding in toetsinhoud

binnen groepen leerlingen. Het merendeel van de beschikbare itemselectieme-

thoden maximaliseert informatie op een specifiek punt op de vaardigheidsschaal.

Indien een toets meerdere grenspunten heeft dan zou de itemselectiemethode

al deze punten gelijktijdig mee moeten nemen bij het bepalen van het volgende

item. Als een doelfunctie is gespecificeerd voor ieder grenspunt, dan kunnen

de doelfuncties worden gecombineerd in een optimalisatiefunctie met behulp

van bestaande methodieken voor het combineren van meerdere doelfuncties. De

itemselectiemethoden die ontwikkeld zijn voor hoofdstuk 2 combineren de meet-

efficiëntie van de methoden die informatie maximaliseren op de grenspunten met

de afstemming op het individu door de methode die informatie maximaliseert op

de lopende vaardigheidsschatting. Een andere methode bepaalt wanneer de toets
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gestopt kan worden en welke beslissing er genomen mag worden over het niveau

van de student. Met behulp van simulaties zijn de efficiëntie en accuraatheid van

beslissingen die zijn genomen met behulp van Wald’s sequential probability ratio

test (SPRT) vergeleken voor acht verschillende itemselectiemethoden. Afhankelijk

van de gebruikte itembank en de specificaties voor de classificatiemethoden zijn

er kleine verschillen gevonden in accuraatheid en efficiëntie. De omvang van het

indifferentiegebied bleek weinig invloed te hebben op de accuraatheid maar had

aanzienlijke invloed op de efficiëntie. Controlemechanismen voor het bewaken van

de inhoudelijke samenstelling van de toets en het reguleren van het itemgebruik

bleken weinig invloed te hebben op de accuraatheid en efficiëntie.

De beslissingen die genomen werden in hoofdstuk 2, hadden betrekking op

unidimensionele toetsen. In de hoofdstukken 3 tot en met 5 worden beslissingen

genomen voor multidimensionele constructen. In het verleden zijn er diverse

methoden ontwikkeld om classificatiebeslissingen te nemen voor constructen

die gemodelleerd zijn met unidimensionele itemresponstheorie. Deze methoden

stoppen de afname van de toets indien er voldoende vertrouwen bestaat in de te

nemen beslissing. Er zijn echter weinig classificatiemethoden beschikbaar voor

multidimensionele constructen. In hoofdstuk 3 is een classificatiemethode ontwik-

keld die gebruikt kan worden voor constructen die gemodelleerd zijn met behulp

van multidimensionele itemresponstheorie voor items die ieder laden op slechts

één dimensie. Er is dan sprake van een simpele dimensionaliteitsstructuur. In

dat geval kunnen bestaande methoden worden gebruikt voor classificatietoetsing.

De SPRT is één van de bestaande methoden voor unidimensionele toetsen die

gebruikt kan worden voor toetsen met een simpele dimensionaliteitsstructuur.

Deze methode neemt dan een beslissing voor iedere afzonderlijke dimensie. De

methode is in hoofdstuk 3 uitgebreid, zodat er ook beslissingen genomen konden

worden op alle dimensies tezamen, op meerdere dimensies, en op subsets van

items. Daarnaast is in dit hoofdstuk een maat gepresenteerd die informatie geeft

over het vertrouwen in de beslissingen die genomen zijn met behulp van de

SPRT. Items werden geselecteerd op basis van maximalisatie van informatie op de

lopende vaardigheidsschatting of op een gewogen combinatie van de grenspun-

ten. De laatste methode was al ontwikkeld in hoofdstuk 2 voor unidimensionele

CCT. Een voorbeeld met behulp van empirische data illustreerde de besproken

methoden.
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In hoofdstuk 3 lag de focus op het nemen van classificatiebeslissingen bij toetsen

waarin ieder item één vaardigheid meet. In tegenstelling tot hoofdstuk 3, meten

items in hoofdstuk 4 meerdere of alle dimensies per item. Als items meerdere

afzonderlijke vaardigheden meten, is er sprake van een complexe dimensionali-

teitsstructuur. De SPRT is in hoofdstuk 4 toegepast op toetsen met een complexe

dimensionaliteitsstructuur. Er wordt een referentielijn gebruikt om beslissingen te

nemen met de SPRT, waarbij de SPRT bepaalt of de toetsing gestopt kan worden.

Items werden in de simulaties voor het hoofdstuk geselecteerd middels maxi-

malisatie van de determinant van de informatiematrix op het grenspunt, op de

lopende vaardigheidsschatting, of op de vaardigheidsschatting die geprojecteerd

was op de referentielijn. De bevindingen zijn vervolgens vergeleken met die voor

aselecte itemselectie. De accuraatheid en de efficiëntie van de classificatiemetho-

den werd onderzocht met behulp van simulaties voor verschillende specificaties

voor de SPRT. De simulaties lieten zien dat de multidimensionele SPRT dezelfde

kenmerken heeft als de unidimensionele SPRT en dat deze beter functioneerde op

multidimensionele data dan de unidimensionele SPRT als items aselect werden

gekozen.

In hoofdstuk 5 werden classificatiebeslissingen genomen voor toetsen met een

simpele en een complexe dimensionaliteitsstructuur met behulp van een tweetal

classificatiemethoden. De eerste is de SPRT, die in hoofdstukken 3 en 4 ook

werd gebruikt. Een andere unidimensionele classificatiemethode gebruikt het

betrouwbaarheidsinterval rond de vaardigheidsschatting voor het nemen van

beslissingen. Deze methode kan ook gebruikt worden voor toetsen met een

simpele dimensionaliteitsstructuur en neemt dan een beslissing per dimensie.

Deze methode is in hoofdstuk 5 uitgebreid om beslissingen te nemen op alle

dimensies gelijktijdig, op meerdere dimensies en op een deel van de items die

laden op een dimensie. De methode kan niet rechtstreeks worden toegepast als

er sprake is van een complexe dimensionaliteitsstructuur. Als een referentielijn

wordt gebruikt, net als in hoofdstuk 4, is het wel mogelijk om een aangepaste

versie van de methode te gebruiken voor toetsen met een complexe dimensio-

naliteitsstructuur. De geschatte vaardigheid moet dan worden geprojecteerd op

de referentielijn. Toetsing wordt dan beëindigd als de betrouwbaarheidsregio

rondom de geprojecteerde vaardigheidsschatting niet langer het grenspunt bevat.

De items werden in hoofdstuk 5 geselecteerd op basis van maximalisatie van de

(determinant van de) informatiematrix op de lopende vaardigheidsschatting of op

basis van de wegingsmethode uit hoofdstuk 2. Deze methode is in hoofdstuk 5
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aangepast voor toetsen met een complexe dimensionaliteitsstructuur. De prestaties

van de bestaande, maar uitgebreide, classificatiemethoden voor toetsen met een

simpele dimensionaliteitsstructuur en de nieuwe methoden voor toetsen met een

complexe dimensionaliteitsstructuur zijn onderzocht met behulp van bestaande

itembanken. De vereiste toetslengte en de consistentie van de beslissingen zijn

bekeken voor een drietal itemselectiemethoden en voor diverse specificaties voor

de classificatiemethoden.

In hoofdstuk 6 is de context van CCT bekeken. Er is verkend wat de mo-

gelijkheden zijn om CCT te gebruiken voor formatief assessment, formatieve

evaluatie, summatief assessment en summatieve evaluatie. Dit is ook bekeken

voor een aantal andere typen digitale toetsen: lineaire toetsen, automatisch sa-

mengestelde toetsen, computergestuurde adaptieve toetsen voor het schatten van

de vaardigheid, adaptieve leeromgevingen, educatieve simulaties en educatieve

spellen. De toetstypen vereisen ieder een eigen ontwerp voor de modulen (student,

kennis, begeleiding en gebruikersinterface) waaruit zij zijn opgebouwd. Daarnaast

verschillen zij in de wijze waarop toetsing wordt afgestemd op het vaardigheidsni-

veau van de individuele student en in de mogelijkheden om de toets te gebruiken

voor verschillende toetsdoelen. In het hoofdstuk werd geconcludeerd dat toetsen

zodanig ontworpen dienen te worden dat de uitkomsten voldoende nauwkeurig

zijn, dat ze geschikt zijn om te worden gebruikt voor het gespecificeerde toetsdoel,

het juiste detailniveau omvatten en dat ze een lengte hebben die geschikt is voor

het toetsdoel en de studentpopulatie.
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